Ching Yao Hu
Taipei Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ching Yao Hu.
Water Research | 2010
Ching Yao Hu; Shang-Lien Lo; Ya Hsuan Liou; Ya Wen Hsu; Kaimin Shih; Chin Jung Lin
The reduction of hexavalent chromium (Cr(VI)) by zero-valent iron (ZVI) is self-inhibiting in near natural groundwater because insulating Fe(III)-Cr(III) (oxy)hydroxide film forms on the ZVI surface during the reaction. This study tries to overcome this deficiency by coating the surface of ZVI with copper to form copper-iron bimetallic particles. The Cr(VI) removal rate by ZVI rose significantly after the copper coating was applied. The copper loading needed for enhancing Cr(VI) removal was much higher than that needed for enhancing removal of chlorinated organic compounds or other oxidative contaminants, because of the higher oxidation potential of Cr(VI). The results of X-ray photoelectron spectroscopy (XPS) indicate that coating copper onto the surface of ZVI can not only increase the deepness of the oxidation film but also increase the oxidation state of iron in the film. This phenomenon means higher Cr(VI) removal capacity per unit weight of ZVI.
Journal of Hazardous Materials | 2010
Ching Yao Hu; Kaimin Shih; James O. Leckie
The study reported herein indicated the stabilization mechanisms at work when copper-laden sludge is thermally treated with gamma-alumina and kaolinite precursors, and evaluated the prolonged leachability of their product phases. Four copper-containing phases - copper oxide (CuO), cuprous oxide (Cu(2)O), copper aluminate spinel (CuAl(2)O(4)), and cuprous aluminate delafossite (CuAlO(2)) - were found in the thermal reactions of the investigated systems. These phases were independently synthesized for leaching by 0.1M HCl aqueous solution, and the relative leachabilities were found to be CuAl(2)O(4)<CuAlO(2)<<Cu(2)O<CuO. The sintering condition and formation mechanism employed to stabilize copper into CuAl(2)O(4) and CuAlO(2) are extensively discussed here. With a 3h of short sintering, it was found that CuAl(2)O(4) could be effectively formed between 850 and 950 degrees C by the gamma-alumina precursor. Although kaolinite had a lower incorporation capability than gamma-alumina, it was found to transform a considerable amount of copper into CuAl(2)O(4) between 950 and 1000 degrees C. At higher temperatures, CuAlO(2) was produced only in the gamma-alumina system as the occurrence of Cu(2)O-cristobalite solution in the kaolinite system precluded the production of CuAlO(2). The hypothesis that the spinel formation mechanism has two stages was supported by the results of the changing Cu/Al mole ratio in the system, and the rate-limiting step was identified as the diffusion process in the second stage.
Ultrasonics Sonochemistry | 2015
Jo Chen Lin; Shang-Lien Lo; Ching Yao Hu; Yu Chi Lee; Jeff Kuo
This study investigated the effects of sulfate ions on the decomposition of perfluorooctanoic acid (PFOA) by ultrasonic (US) irradiation at various pHs, sulfate doses, powers and temperatures. The removal of PFOA was augmented with an increased sulfate ion concentration, with PFOA being almost completely decomposed in 90min at 25°C with a sulfate dose of 117mM. The two major mechanisms in the sulfate-assisted sonochemical system are the direct destruction of PFOA by cavitation and the indirect destruction of PFOA by sulfate free radicals. The decomposition of PFOA followed pseudo-first-order kinetics and was not influenced by pH. The reaction rate constants decreased with increases in temperature due to decreases in the surface tension of the solution.
Journal of Hazardous Materials | 2011
Nien Hsun Li; Shang Lain Lo; Ching Yao Hu; Ching Hong Hsieh; Ching Lung Chen
The feasibility of stabilizing copper-laden sludge by high-temperature CuFe(2)O(4) ferritization process is investigated with different sintering temperature, and the prolonged leaching test. The thermal behavior, structural morphology, phase composition, and phase transformation of the stabilized sludge were investigated by using thermal gravimetry-differential scanning calorimetry, scanning electron microscopy and X-ray diffraction. The leaching behavior of the stabilized sludge under acidic environment was evaluated by modified Toxicity Characteristic Leaching Procedure (TCLP). The results indicated that CuFe(2)O(4) could be effectively formed at around 800°C by the iron oxide precursor with a 3h of short sintering. The transformation was discovered on crystallographic spinel structures: the low-temperature (800-900°C) tetragonal phase (t-CuFe(2)O(4)) and the high-temperature (∼ 1000°C) cubic phase (c-CuFe(2)O(4)). At higher temperatures (∼ 1100°C), the formation of cuprous ferrite delafossite phase (CuFeO(2)) from the dissociation of CuFe(2)O(4) was also noticed. Both CuFe(2)O(4) spinel and CuFeO(2) delafossite phase have a better intrinsic resistance to acidic environment when compared to that of CuO phase by the modified TCLP test. The sintering strategy designed for copper-laden sludge is proven to be beneficial in stabilizing copper.
Environmental Monitoring and Assessment | 2008
C. L. Chang; W. H. Kuan; P. S. Lui; Ching Yao Hu
The effects of landscape characteristics on surface water quality were evaluated in terms of land-use condition, soil type and slope. The case area, the Chichiawan stream in the Wulin catchment in Taiwan, is Formosan landlocked salmon’s natural habitat. Due to the agriculture behavior and mankind’s activities, the water and environmental quality has gradually worsened. This study applied WinVAST model to predict hydrological responses and non-point source pollution (NPSP) exports in the Wulin catchment. The land-use condition and the slope of land surface in a catchment are major effect factors for watershed responses, including flows and pollutant exports. This work discussed the possible variation of watershed responses induced by the change of land-use condition, soil type and slope, etc. The results show that hydrological responses are highly relative to the value of Curve Number (CN); Pollutant exports have large relation to the average slope of the land surface in the Wulin catchment.
Chemosphere | 2008
Ching Hong Hsieh; Shang-Lien Lo; Ching Yao Hu; Kaimin Shih; Wen Hui Kuan; Ching Lung Chen
Industrial wastewater sludge was treated by microwave processes to enhance the stabilization of laden copper. The effects of additives, processing time, microwave adsorbents, moisture content, reaction atmosphere, and cooling gas were investigated. The stabilization results were significantly enhanced by metal powder additives, prolonged microwave processing time, proper moisture content, the addition of carbonaceous materials, and a reaction environment with inert gas. It was also found that the moisture content would increase the homogeneity of applied microwave energy, and thus achieve a better overall efficiency between stabilizing agents and copper. The added metal powders may reduce Cu(II) to Cu(0) in the sludge or TCLP. The resulting thermal energy of microwave radiation, and microarcing process and the oxidation heat of Al powder may also assist the transformation of Cu(II) into CuO and CuAl2O4 phases. Part of the sludge was vitrified within inert gas environment when the processing time was longer than 18 min and active carbon dosage was more than 3g. Reduction reactions also occurred in the hybrid microwave processes, leading to the reduction of sulfates and metal ions, and the formation of Cu2S and FeS. Moreover, the microwave radiation can also enhance the feasibility of co-treating of inorganic and organic solid waste.
Journal of Hazardous Materials | 2011
Nien Hsun Li; Yen Hsin Chen; Ching Yao Hu; Ching Hong Hsieh; Shang-Lien Lo
The feasibility of stabilizing nickel-laden sludge by a high-temperature NiCr(2)O(4) synthesis process was investigated with different sintering temperatures, salt contents, molar ratios, and reaction atmospheres. The crystalline phases of species were investigated by using an X-ray diffraction, and the surface characteristics of particles were observed by scanning electron microscopy. The leaching behavior of the stabilized sludge was evaluated by Toxicity Characteristic Leaching Procedure (TCLP) test. The results indicated that NiCr(2)O(4) was formed at around 800°C by transforming NiO and Cr(2)O(3) into a spinel structure. Leaching concentrations of both nickel and chromium decreased with an increase in the sintering temperature. The existence of salt in the sludge disturbed the formation of spinel, but a moderate salt content contributed to stabilization efficiency. A Cr/Ni molar ratio >2 also contributed to the stabilization efficiency of heavy metals after the thermal process. NiCr(2)O(4) was transformed from simulated sludge under both an N(2) and air atmosphere. The sintering strategy designed for nickel-laden sludge was proven to be beneficial in stabilizing nickel and chromium.
Journal of Hazardous Materials | 2013
Ching Hong Hsieh; Kaimin Shih; Ching Yao Hu; Shang-Lien Lo; Nien Hsun Li; Yi Ting Cheng
To stabilize the copper and aluminum ions in simulated sludge, a series of sintering processes were conducted to transform Cu/Al precipitation into spinel structure, CuAl(2)O(4). The results indicated that the large amount of salt content in the simulated sludge would hinder the formation of crystalline CuAl(2)O(4) generated from the incorporation of CuO and Al(2)O(3), even after the sintering process at 1200 °C. Opposite to the amorphous CuAl(2)O(4), the crystalline CuAl(2)O(4) can be formed in the sintering process at 700-1100 °C for 3 h with the desalinating procedure. According to the theory of free energy, the experimental data and references, the best formation temperature of CuAl(2)O(4) was determined at 900-1000 °C. As the temperature rose to 1200 °C, CuAlO(2) was formed with the dissociation of CuAl(2)O(4). The XPS analysis also showed that the binding energy of copper species in the simulated sludge was switched from 933.8 eV for Cu(II) to 932.8 eV for Cu(I) with the variation of temperature. In this system, the leaching concentration of copper and aluminum ions from sintered simulated sludge was decreased with ascending temperature and reached the lowest level at 1000 °C. Furthermore, the descending tendency coincided with the formation tendency of spinel structure and the diminishing of copper oxide.
Separation and Purification Technology | 2013
Ching Yao Hu; Shang-Lien Lo; Chia Ling Chang; Fu Ling Chen; Yu De Wu; Jia Lin Ma
Separation and Purification Technology | 2014
Ching Yao Hu; Shang-Lien Lo; Wen Hui Kuan