Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chirayu D. Pandya is active.

Publication


Featured researches published by Chirayu D. Pandya.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2013

Antioxidants as potential therapeutics for neuropsychiatric disorders

Chirayu D. Pandya; Kristy R. Howell; Anilkumar Pillai

Oxidative stress has been implicated in the pathophysiology of many neuropsychiatric disorders such as schizophrenia, bipolar disorder, major depression etc. Both genetic and non-genetic factors have been found to cause increased cellular levels of reactive oxygen species beyond the capacity of antioxidant defense mechanism in patients of psychiatric disorders. These factors trigger oxidative cellular damage to lipids, proteins and DNA, leading to abnormal neural growth and differentiation. Therefore, novel therapeutic strategies such as supplementation with antioxidants can be effective for long-term treatment management of neuropsychiatric disorders. The use of antioxidants and PUFAs as supplements in the treatment of neuropsychiatric disorders has provided some promising results. At the same time, one should be cautious with the use of antioxidants since excessive antioxidants could dangerously interfere with some of the protective functions of reactive oxygen species. The present article will give an overview of the potential strategies and outcomes of using antioxidants as therapeutics in psychiatric disorders.


Asian Journal of Psychiatry | 2013

BDNF-TrkB signaling and neuroprotection in schizophrenia.

Chirayu D. Pandya; Ammar Kutiyanawalla; Anilkumar Pillai

Neurotrophins such as brain-derived neurotropic factor (BDNF), play critical role in neuronal survival, synaptic plasticity and cognitive functions. BDNF is known to mediate its action through various intracellular signaling pathways triggered by activation of tyrosine kinase receptor B (TrkB). Evidence from clinical as well pre-clinical studies indicate alterations in BDNF signaling in schizophrenia. Moreover, several antipsychotic drugs have time-dependent effects on BDNF levels in both schizophrenia subjects and animal models of schizophrenia. Given the emerging interest in neuroplasticity in schizophrenia understanding the neuroprotective and cell survival roles of BDNF signaling will enhance our knowledge of its diverse effects, which may lead to more effective treatments for schizophrenia. This article will present an overview of recent findings on the role of BDNF signaling in the pathophysiology and treatment of schizophrenia, with a special focus on its neuroprotective effects.


Molecular Autism | 2014

Ubiquitin-proteasome dependent degradation of GABAAα1 in autism spectrum disorder

Amanda Crider; Chirayu D. Pandya; Diya Peter; Anthony O. Ahmed; Anilkumar Pillai

BackgroundAlthough the neurobiological basis of autism spectrum disorder (ASD) is not fully understood, recent studies have indicated the potential role of GABAA receptors in the pathophysiology of ASD. GABAA receptors play a crucial role in various neurodevelopmental processes and adult neuroplasticity. However, the mechanism(s) of regulation of GABAA receptors in ASD remains poorly understood.MethodsPostmortem middle frontal gyrus tissues (13 ASD and 13 control subjects) were used. In vitro studies were performed in primary cortical neurons at days in vitro (DIV) 14. The protein levels were examined by western blotting. Immunofluorescence studies were employed for cellular localization. The gene expression was determined by RT-PCR array and qRT-PCR.ResultsA significant decrease in GABAAα1 protein, but not mRNA levels was found in the middle frontal gyrus of ASD subjects indicating a post-translational regulation of GABAA receptors in ASD. At the cellular level, treatment with proteasomal inhibitor, MG132, or lactacystin significantly increased GABAAα1 protein levels and Lys48-linked polyubiquitination of GABAAα1, but reduced proteasome activity in mouse primary cortical neurons (DIV 14 from E16 embryos). Moreover, treatment with betulinic acid, a proteasome activator significantly decreased GABAAα1 protein levels in cortical neurons indicating the role of polyubiquitination of GABAAα1 proteins with their subsequent proteasomal degradation in cortical neurons. Ubiquitination specific RT-PCR array followed by western blot analysis revealed a significant increase in SYVN1, an endoplasmic reticulum (ER)-associated degradation (ERAD) E3 ubiquitin ligase in the middle frontal gyrus of ASD subjects. In addition, the inhibition of proteasomal activity by MG132 increased the expression of GABAAα1 in the ER. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in cortical neurons. Moreover, reduced association between SYVN1 and GABAAα1 was found in the middle frontal gyrus of ASD subjects.ConclusionsSYVN1 plays a critical role as an E3 ligase in the ubiquitin proteasome system (UPS)-mediated GABAAα1 degradation. Thus, inhibition of the ubiquitin-proteasome-mediated GABAAα1 degradation may be an important mechanism for preventing GABAAα1 turnover to maintain GABAAα1 levels and GABA signaling in ASD.


Cell Communication and Signaling | 2014

TrkB interacts with ErbB4 and regulates NRG1-induced NR2B phosphorylation in cortical neurons before synaptogenesis

Chirayu D. Pandya; Anilkumar Pillai

BackgroundNeuregulin 1 (NRG1) and NMDARs play important roles in various neuronal functions including neural development. NMDARs also promote many cellular events such as proliferation and survival of neuroblasts before synapse formation. Although many recent studies have indicated that NRG1 regulates NMDAR function in cortical neurons, the effect of NRG1 on NMDAR activation before synapse formation is not well studied.ResultsNRG1 induces activation of NMDAR subunit NR2B, and tropomyosin-related kinase receptor B (TrkB), the receptor for BDNF via activation of phospholipase C-gamma (PLC-γ) in immature primary cortical neurons. Our data using TrkB inhibitor (K252a), TrkB siRNA and TrkB−/− neurons demonstrated that TrkB inhibition suppresses NRG1-induced NR2B activation in neurons. We found that NRG1 stimulation leads to GABAA receptor-mediated TrkB activation. Co-immunoprecipitation and proximity ligase assay showed that TrkB interacts with ErbB4 (NRG1 receptor) and the TrkB-ErbB4 interaction was increased following NRG1 treatment. A significant reduction in TrkB-ErbB4 interaction was observed in the prefrontal cortex of schizophrenia subjects. We found significant increase in released BDNF levels following NRG1 treatment, which was inhibited by ErbB4 inhibitor, AG1478. In addition, pretreatment with BDNF neutralizing antibody, but not control IgG abolished NRG1-induced increases in phospho-TrkB and phospho-NR2B levels. Moreover, studies using TrkB mutants showed that intercellular domain of TrkB is necessary for TrkB-ErbB4 interaction and NR2B activation.ConclusionsBDNF/TrkB signaling plays an important role in the NRG1-stimulated NR2B regulation. These findings could be of relevance to many neurodevelopmental disorders, as NRG1 and BDNF signaling pathways have been implicated in autism and schizophrenia.


Psychoneuroendocrinology | 2014

Glucocorticoid regulates TrkB protein levels via c-Cbl dependent ubiquitination: A decrease in c-Cbl mRNA in the prefrontal cortex of suicide subjects

Chirayu D. Pandya; Ammar Kutiyanawalla; Gustavo Turecki; Anilkumar Pillai

Brain derived neurotrophic factor (BDNF) signaling through its receptor TrkB plays a crucial role in neurodevelopment and plasticity. Stress and glucocorticoids have been shown to alter TrkB signaling in neurons, and defects in TrkB expression have been reported in the prefrontal cortex of suicide subjects. Glucocorticoid treatment has been shown to induce deleterious effects on the neuronal maturation. However, the mechanisms involved in the regulation of TrkB by glucocorticoid during neurodevelopment are not clear. Here we show that acute corticosterone exposure induced posttranslational upregulation of TrkB in primary cortical neurons (days in vitro 4, DIV4), which was blocked by the proteasome inhibitors. Acute corticosterone-induced increase in TrkB protein levels was dependent on glucocorticoid receptor (GR). At the cellular level, ubiquitin E3 ligase c-Cbl mediates TrkB stabilization and corticosterone-induced TrkB levels. Moreover, the tyrosine kinase binding domain in c-Cbl plays a critical role in corticosterone-induced TrkB levels. Chronic treatment of neurons with corticosterone induced significant decreases in both TrkB and c-Cbl protein levels. Acute corticosterone treatment failed to induce any significant change in TrkB and c-Cbl protein levels in mature neurons (DIV 12), where as chronic corticosterone exposure reduced TrkB levels. Under an in vivo condition, chronic corticosterone exposure induced down-regulation of c-Cbl in mouse frontal cortex and hippocampus. Importantly, we demonstrate for the first time a significant decrease in c-Cbl mRNA levels in the prefrontal cortex of suicide subjects indicating the possible role of c-Cbl in the pathophysiology of suicidal behavior. Thus, ubiquitin-proteasome-mediated TrkB regulation may be an important mechanism for improving BDNF signaling and maintaining neuroplasticity in stress-related neuropsychiatric disorders.


Stem Cell Research | 2014

Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells

Rajnikumar Sangani; Chirayu D. Pandya; Maryka H. Bhattacharyya; Sudharsan Periyasamy-Thandavan; Norman B. Chutkan; Shanu Markand; William D. Hill; Mark W. Hamrick; Carlos M. Isales; Sadanand Fulzele

Bone marrow stromal cell (BMSC) adhesion and migration are fundamental to a number of pathophysiologic processes, including fracture and wound healing. Vitamin C is beneficial for bone formation, fracture repair and wound healing. However, the role of the vitamin C transporter in BMSC adhesion, migration and wound healing is not known. In this study, we knocked-down the sodium-dependent vitamin C transporter, SVCT2, the only known transporter of vitamin C in BMSCs, and performed cell adhesion, migration, in-vitro scratch wound healing and F-actin re-arrangement studies. We also investigated the role of oxidative stress on the above processes. Our results demonstrate that both oxidative stress and down-regulation of SVCT2 decreased cell attachment and spreading. A trans-well cell migration assay showed that vitamin C helped in BMSC migration and that knockdown of SVCT2 decreased cell migration. In the in-vitro scratch wound healing studies, we established that oxidative stress dose-dependently impairs wound healing. Furthermore, the supplementation of vitamin C significantly rescued the BMSCs from oxidative stress and increased wound closing. The knockdown of SVCT2 in BMSCs strikingly decreased wound healing, and supplementing with vitamin C failed to rescue cells efficiently. The knockdown of SVCT2 and induction of oxidative stress in cells produced an alteration in cytoskeletal dynamics. Signaling studies showed that oxidative stress phosphorylated members of the MAP kinase family (p38) and that vitamin C inhibited their phosphorylation. Taken together, these results indicate that both the SVCT2 transporter and oxidative stress play a vital role in BMSC attachment, migration and cytoskeletal re-arrangement. BMSC-based cell therapy and modulation of SVCT2 could lead to a novel therapeutic approach that enhances bone remodeling, fracture repair and wound healing in chronic disease conditions.


Current Neuropharmacology | 2014

Glucocorticoid regulates parkin expression in mouse frontal cortex: implications in schizophrenia.

Chirayu D. Pandya; Amanda Crider; Anilkumar Pillai

Stress and glucocorticoid hormones, which are released into the circulation following stressful experiences, have been shown to contribute significantly to the manifestation of various psychiatric illnesses including schizophrenia and depression. Studies in rodents have reported dose and time dependent effects of glucocorticoids on the expression of proteins related to neuroplasticity. However, the mechanism(s) involved in the regulation of proteins by glucocorticoids are not clear. Ubiquitin ligases play important role in degradation, trafficking and stabilization of proteins. The present study investigated the effect of glucocorticoid on ubiquitin-proteasome system in mouse frontal cortex. A significant increase in mRNA and protein levels of parkin, an E3 ubiquitin ligase was found in cultured mouse primary cortical neurons following corticosterone treatment. An increase in parkin levels was also found in mouse frontal cortex in vivo following acute dexamethasone treatment. However, chronic treatment with corticosterone did not change parkin protein levels in mouse frontal cortex. Studies using postmortem brain samples from schizophrenia and control subjects indicated a significant increase in parkin protein levels in frontal cortex of schizophrenia subjects suggesting a response to increased stress conditions in schizophrenia. These findings suggest a possible role of parkin in the pathophysiology of stress-related psychiatric disorders.


Biological Trace Element Research | 2013

Association of cadmium and lead with antioxidant status and incidence of benign prostatic hyperplasia in patients of Western India.

Chirayu D. Pandya; Sharad Gupta; Prakash P. Pillai; Ajay Bhandarkar; Arif Khan; Arunodhay Bhan; Akhilesh Prajapati; Sarita Gupta

The association of cadmium (Cd) and lead (Pb) in the pathophysiology and progression of benign prostate hyperplasia (BPH) has been evaluated in an epidemiological study with 116 BPH patients of the western part of India. The prostatic acid phosphatase activity, prostate-specific antigen, maximum urinary flow rate (Qmax), and redox status of BPH patients were correlated with Cd and Pb contents. Additionally, patients were also separated on the basis of their age, genetic lineage, and additive habits and correlated with the Cd, Pb, and Qmax levels. Our results suggest that the accumulation of toxic metals in prostate tissue has a significant positive correlation with the pathogenesis of BPH. Cd and Pb exert their effects through altered antioxidant defense mechanisms, ultimately leading to increased BPH severity. Progression of the pathogenesis also depends on other factors such as additive habits, genetic lineage, and age of the patients.


Molecular Psychiatry | 2017

Transglutaminase 2 overexpression induces depressive-like behavior and impaired TrkB signaling in mice.

Chirayu D. Pandya; N Hoda; Amanda Crider; Diya Peter; A Kutiyanawalla; S Kumar; Anthony O. Ahmed; Gustavo Turecki; C M Hernandez; A V Terry; Anilkumar Pillai

Serotonin (5-hydroxytryptamine, 5-HT) and brain-derived neurotrophic factor (BDNF) are two signaling molecules that have important regulatory roles in the development and plasticity of neural circuits that are known to be altered in depression. However, the mechanism by which 5-HT regulates BDNF signaling is unknown. In the present study, we found that 5-HT treatment increases BDNF receptor, TrkB (tropomyosin related kinase B), levels in mouse primary cortical neurons via a Rac1 (RAS-related C3 botulinum toxin substrate 1)-dependent mechanism. Significant increases in the levels of type-2 transglutaminase (TG2, which is implicated in transamidation of 5-HT to Rac1) are observed in the mouse prefrontal cortex (PFC) following chronic exposure to stress. We also found that TG2 levels are increased in the post-mortem PFC of depressed suicide subjects relative to matched controls. Moreover, in mice, neuronal overexpression of TG2 resulted in the atrophy of neurons and reduced levels of TrkB in the PFC as well as a depressive-like phenotype. Overexpression of TG2 in mouse cortical neurons reduced TrkB levels as a result of impaired endocytosis of TrkB. TG2 inhibition by either a viral particle or pharmacological approach attenuated behavioral deficits caused by chronic unpredictable stress. Moreover, the overexpression of TrkB in the mouse PFC ameliorated the depressive-like phenotype of TG2-overexpressed mice. Taken together, these post-mortem and preclinical findings identify TG2 as a critical mediator of the altered TrkB expression and depressive-like behaviors associated with chronic exposure to stress and suggest that TG2 may represent a novel therapeutic target in depression.


International Immunopharmacology | 2018

Effect of plasma-derived extracellular vesicles on erythrocyte deformability in polymicrobial sepsis

Kumar Subramani; Srikrishnan P. Raju; Xiaogang Chu; Marie Warren; Chirayu D. Pandya; Nasrul Hoda; Sadanand Fulzele; Raghavan Raju

&NA; Sepsis affects microcirculation and tissue perfusion leading to tissue hypoxia and multiple organ dysfunction. Red blood cells (RBCs; erythrocytes) are typically biconcave in shape, transport hemoglobin‐bound oxygen and are reversibly deformable facilitating trafficking through capillaries. Decreased deformability of RBCs adversely affects tissue oxygenation. The purpose of this project was to determine RBC deformability in a murine model of polymicrobial sepsis by a method that utilizes laser diffraction and microfluidics, and to identify the causative factors in the plasma that may contribute to loss in RBC deformability. Blood samples from mice subjected to cecal ligation and puncture (CLP) model of sepsis were used. RBC deformability was tested using Rheoscan‐AnD 300 under shear stress range of 0–20 Pascal (Pa) that depicts the common rheological behavior of RBCs flowing through blood vessels ranging from major vessels to capillaries. Normal RBCs were treated with plasma‐derived extracellular vesicles (EVs) and their effect on RBC deformability was also tested. The experiments demonstrated a significant decrease in RBC deformability following sepsis. RBC deformability recovered in sham‐operated animals by the third day, whereas animals with sepsis continued to show decreased levels of deformability. EVs isolated from the plasma of animals from the sepsis group significantly decreased deformability of RBCs ex vivo. Analysis of miRNA cargo in EVs showed distinct molecular profiles for sham‐operated and sepsis‐induced mice. In summary, sepsis induced a decrease in RBC deformability and the acquired rigidity may have adverse effect on microcirculation, tissue perfusion, and organ function.

Collaboration


Dive into the Chirayu D. Pandya's collaboration.

Top Co-Authors

Avatar

Anilkumar Pillai

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Amanda Crider

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustavo Turecki

Douglas Mental Health University Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nasrul Hoda

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Babak Baban

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Diya Peter

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Sadanand Fulzele

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Talisha Davis

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge