Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chiung Yu Hung is active.

Publication


Featured researches published by Chiung Yu Hung.


Genome Research | 2009

Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives.

Thomas J. Sharpton; Jason E. Stajich; Steven D. Rounsley; Malcolm J. Gardner; Jennifer R. Wortman; Vinita S. Jordar; Rama Maiti; Chinnappa D. Kodira; Daniel E. Neafsey; Qiandong Zeng; Chiung Yu Hung; Cody McMahan; Anna Muszewska; Marcin Grynberg; M. Alejandra Mandel; Ellen M. Kellner; Bridget M. Barker; John N. Galgiani; Marc J. Orbach; Theo N. Kirkland; Garry T. Cole; Matthew R. Henn; Bruce W. Birren; John W. Taylor

While most Ascomycetes tend to associate principally with plants, the dimorphic fungi Coccidioides immitis and Coccidioides posadasii are primary pathogens of immunocompetent mammals, including humans. Infection results from environmental exposure to Coccidiodies, which is believed to grow as a soil saprophyte in arid deserts. To investigate hypotheses about the life history and evolution of Coccidioides, the genomes of several Onygenales, including C. immitis and C. posadasii; a close, nonpathogenic relative, Uncinocarpus reesii; and a more diverged pathogenic fungus, Histoplasma capsulatum, were sequenced and compared with those of 13 more distantly related Ascomycetes. This analysis identified increases and decreases in gene family size associated with a host/substrate shift from plants to animals in the Onygenales. In addition, comparison among Onygenales genomes revealed evolutionary changes in Coccidioides that may underlie its infectious phenotype, the identification of which may facilitate improved treatment and prevention of coccidioidomycosis. Overall, the results suggest that Coccidioides species are not soil saprophytes, but that they have evolved to remain associated with their dead animal hosts in soil, and that Coccidioides metabolism genes, membrane-related proteins, and putatively antigenic compounds have evolved in response to interaction with an animal host.


Journal of Clinical Investigation | 2011

Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice

Marcel Wüthrich; Benjamin Gern; Chiung Yu Hung; Karen Ersland; Nicole Rocco; John Pick-Jacobs; Kevin Galles; Hanna I. Filutowicz; Thomas F. Warner; Michael D. Evans; Garry T. Cole; Bruce S. Klein

Worldwide rates of systemic fungal infections, including three of the major pathogens responsible for such infections in North America (Coccidioides posadasii, Histoplasma capsulatum, and Blastomyces dermatitidis), have soared recently, spurring interest in developing vaccines. The development of Th1 cells is believed to be crucial for protective immunity against pathogenic fungi, whereas the role of Th17 cells is vigorously debated. In models of primary fungal infection, some studies have shown that Th17 cells mediate resistance, while others have shown that they promote disease pathology. Here, we have shown that Th1 immunity is dispensable and that fungus-specific Th17 cells are sufficient for vaccine-induced protection against lethal pulmonary infection with B. dermatitidis in mice. Further, vaccine-induced Th17 cells were necessary and sufficient to protect against the three major systemic mycoses in North America. Mechanistically, Th17 cells engendered protection by recruiting and activating neutrophils and macrophages to the alveolar space, while the induction of Th17 cells and acquisition of vaccine immunity unexpectedly required the adapter molecule Myd88 but not the fungal pathogen recognition receptor Dectin-1. These data suggest that human vaccines against systemic fungal infections should be designed to induce Th17 cells if they are to be effective.


Genome Research | 2010

Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control

Daniel E. Neafsey; Bridget M. Barker; Thomas J. Sharpton; Jason E. Stajich; Daniel J. Park; Emily Whiston; Chiung Yu Hung; Cody McMahan; Jared White; Sean Sykes; David I. Heiman; Qiandong Zeng; Amr Abouelleil; Lynne Aftuck; Daniel Bessette; Adam Brown; Michael Fitzgerald; Annie Lui; J. Pendexter Macdonald; Margaret Priest; Marc J. Orbach; John N. Galgiani; Theo N. Kirkland; Garry T. Cole; Bruce W. Birren; Matthew R. Henn; John W. Taylor; Steven D. Rounsley

We have sequenced the genomes of 18 isolates of the closely related human pathogenic fungi Coccidioides immitis and Coccidioides posadasii to more clearly elucidate population genomic structure, bringing the total number of sequenced genomes for each species to 10. Our data confirm earlier microsatellite-based findings that these species are genetically differentiated, but our population genomics approach reveals that hybridization and genetic introgression have recently occurred between the two species. The directionality of introgression is primarily from C. posadasii to C. immitis, and we find more than 800 genes exhibiting strong evidence of introgression in one or more sequenced isolates. We performed PCR-based sequencing of one region exhibiting introgression in 40 C. immitis isolates to confirm and better define the extent of gene flow between the species. We find more coding sequence than expected by chance in the introgressed regions, suggesting that natural selection may play a role in the observed genetic exchange. We find notable heterogeneity in repetitive sequence composition among the sequenced genomes and present the first detailed genome-wide profile of a repeat-induced point mutation (RIP) process distinctly different from what has been observed in Neurospora. We identify promiscuous HLA-I and HLA-II epitopes in both proteomes and discuss the possible implications of introgression and population genomic data for public health and vaccine candidate prioritization. This study highlights the importance of population genomic data for detecting subtle but potentially important phenomena such as introgression.


Annals of the New York Academy of Sciences | 2007

Virulence mechanisms of coccidioides.

Chiung Yu Hung; Jianmin Xue; Garry T. Cole

Abstract:  Coccidioides is a fungal respiratory pathogen of humans that can cause disease in both immunosuppressed and immunocompetent individuals. We describe here three mechanisms by which the pathogen survives in the hostile host environment: production of a dominant spherule outer wall glycoprotein (SOWgp) that modulates host immune response and results in compromised cell‐mediated immunity to coccidioidal infection, depletion of SOWgp presentation on the surface of endospores, which prevents host recognition of the pathogen when the fungal cells are most vulnerable to phagocytic defenses, and induction of elevated production of host arginase I and coccidioidal urease, which contribute to tissue damage at sites of infection. Arginase I competes with inducible nitric oxide synthase (iNOS) in macrophages for the common substrate, L‐arginine, and thereby reduces nitric oxide (NO) production and increases the synthesis of host orinithine and urea. Host‐derived L‐ornithine may promote pathogen growth and proliferation by providing a pool of the monoamine, which could be taken up and used for synthesis of polyamines via metabolic pathways of the parasitic cells. We have shown that high concentrations of Coccidioides‐ and host‐derived urea at infection sites in the presence of urease produced and released by the pathogen, results in secretion of ammonia and contributes to alkalinization of the microenvironment. We propose that ammonia and enzymatically active urease released from spherules during the parasitic cycle of Coccidioides exacerbate the severity of coccidioidal infection by contributing to a compromised immune response to infection and damage of host tissue at foci of infection.


Journal of Immunology | 2014

C-Type Lectin Receptors Differentially Induce Th17 Cells and Vaccine Immunity to the Endemic Mycosis of North America

Huafeng Wang; Vanessa LeBert; Chiung Yu Hung; Kevin Galles; Shinobu Saijo; Xin Lin; Garry T. Cole; Bruce S. Klein; Marcel Wüthrich

Vaccine immunity to the endemic mycoses of North America requires Th17 cells, but the pattern recognition receptors and signaling pathways that drive these protective responses have not been defined. We show that C-type lectin receptors exert divergent contributions to the development of antifungal Th17 cells and vaccine resistance against Blastomyces dermatitidis, Histoplasma capsulatum, and Coccidioides posadasii. Acquired immunity to B. dermatitidis requires Dectin-2, whereas vaccination against H. capsulatum and C. posadasii infection depends on innate sensing by Dectin-1 and Dectin-2, but not Mincle. Tracking Ag-specific T cells in vivo established that the Card9 signaling pathway acts indispensably and exclusively on differentiation of Th17 cells, while leaving intact their activation, proliferation, survival, and migration. Whereas Card9 signaling is essential, C-type lectin receptors offer distinct and divergent contributions to vaccine immunity against these endemic fungal pathogens. Our work provides new insight into innate immune mechanisms that drive vaccine immunity and Th17 cells.


Infection and Immunity | 2009

A Genetically Engineered Live Attenuated Vaccine of Coccidioides posadasii Protects BALB/c Mice against Coccidioidomycosis

Jianmin Xue; Xia Chen; Dale Selby; Chiung Yu Hung; Jieh Juen Yu; Garry T. Cole

ABSTRACT Coccidioidomycosis (also known as San Joaquin Valley fever) is an occupational disease. Workers exposed to outdoor dust which contains spores of the soil-inhabiting fungus have a significantly increased risk of respiratory infection. In addition, people with compromised T-cell immunity, the elderly, and certain racial groups, particularly African-Americans and Filipinos, who live in regions of endemicity in the southwestern United States have an elevated incidence of symptomatic infection caused by inhalation of spores of Coccidioides posadasii or Coccidioides immitis. Recurring epidemics and escalation of medical costs have helped to motivate production of a vaccine against valley fever. The major focus has been the development of a defined, T-cell-reactive, recombinant protein vaccine. However, none of the products described to date have provided full protection to coccidioidal disease-susceptible BALB/c mice. Here we describe the first genetically engineered, live, attenuated vaccine that protects both BALB/c and C57BL/6 mice against coccidioidomycosis. Two chitinase genes (CTS2 and CTS3) were disrupted to yield the attenuated strain, which was unable to endosporulate and was no longer infectious. Vaccinated survivors mounted an immune response characterized by production of both T-helper-1- and T-helper-2-type cytokines. Histology revealed well-formed granulomas and markedly diminished inflammation. Significantly fewer organisms were observed in the lungs of survivors than in those of nonvaccinated mice. Additional investigations are required to further define the nature of the live, attenuated vaccine-induced immunity against Coccidioides infection.


Vaccine | 2012

An agonist of human complement fragment C5a enhances vaccine immunity against Coccidioides infection

Chiung Yu Hung; Brady J. Hurtgen; Michael Bellecourt; Sam D. Sanderson; Edward L. Morgan; Garry T. Cole

Coccidioides is a fungal pathogen and causative agent of a human respiratory disease against which no clinical vaccine exists. In this study we evaluated a novel vaccine adjuvant referred to as EP67, which is a peptide agonist of the biologically active C-terminal region of human complement component C5a. The EP67 peptide was conjugated to live spores of an attenuated vaccine strain (ΔT) of Coccidioides posadasii. The non-conjugated ΔT vaccine provided partial protection to BALB/c mice against coccidioidomycosis. In this report we compared the protective efficacy of the ΔT-EP67 conjugate to the ΔT vaccine in BALB/c mice. Animals immunized subcutaneously with the ΔT-EP67 vaccine showed significant increase in survival and decrease in fungal burden over 75 days postchallenge. Increased pulmonary infiltration of dendritic cells and macrophages was observed on day 7 postchallenge but marked decrease in neutrophil numbers had occurred by 11 days. The reduced influx of neutrophils may have contributed to the observed reduction of inflammatory pathology. Mice immunized with the ΔT-EP67 vaccine also revealed enhanced expression of MHC II molecules on the surface of antigen presenting cells, and in vitro recall assays of immune splenocytes showed elevated Th1- and Th17-type cytokine production. The latter correlated with a marked increase in lung infiltration of IFN-γ- and IL-17-producing CD4(+) T cells. Elevated expression of T-bet and RORc transcription factors in ΔT-EP67-vaccinated mice indicated the promotion of Th1 and Th17 cell differentiation. Higher titers of Coccidioides antigen-specific IgG1 and IgG2a were detected in mice immunized with the EP67-conjugated versus the non-conjugated vaccine. These combined results suggest that the EP67 adjuvant enhances protective efficacy of the live vaccine by augmentation of T-cell immunity, especially through Th1- and Th17-mediated responses to Coccidioides infection.


Infection and Immunity | 2006

Multivalent Recombinant Protein Vaccine against Coccidioidomycosis

Eric J. Tarcha; Venkatesha Basrur; Chiung Yu Hung; Malcolm J. Gardner; Garry T. Cole

ABSTRACT Coccidioidomycosis is a human respiratory disease that is endemic to the southwestern United States and is caused by inhalation of the spores of a desert soilborne fungus. Efforts to develop a vaccine against this disease have focused on identification of T-cell-reactive antigens derived from the parasitic cell wall which can stimulate protective immunity against Coccidioides posadasii infection in mice. We previously described a productive immunoproteomic/bioinformatic approach to the discovery of vaccine candidates which makes use of the translated genome of C. posadasii and a computer-based method of scanning deduced sequences of seroreactive proteins for epitopes that are predicted to bind to human major histocompatibility (MHC) class II-restricted molecules. In this study we identified a set of putative cell wall proteins predicted to contain multiple, promiscuous MHC II binding epitopes. Three of these were expressed by Escherichia coli, combined in a vaccine, and tested for protective efficacy in C57BL/6 mice. Approximately 90% of the mice survived beyond 90 days after intranasal challenge, and the majority cleared the pathogen. We suggest that the multicomponent vaccine stimulates a broader range of T-cell clones than the single recombinant protein vaccines and thereby may be capable of inducing protection in an immunologically heterogeneous human population.


Infection and Immunity | 2012

Construction and Evaluation of a Novel Recombinant T Cell Epitope-Based Vaccine against Coccidioidomycosis

Brady J. Hurtgen; Chiung Yu Hung; Gary R. Ostroff; Stuart M. Levitz; Garry T. Cole

ABSTRACT Clinical and animal studies of coccidioidomycosis have demonstrated that activated CD4+ T lymphocytes are essential for protection against this fungal respiratory disease. We previously reported a vaccine against Coccidioides infection which contained three recombinant CD4+ T cell-reactive proteins and induced a robust, protective immune response in mice. Due to the anticipated high cost of production and clinical assessment of this multivalent vaccine, we generated a single protein which contained immunodominant T cell epitopes of the three polypeptides. Epitopes were initially identified by computational prediction of their ability to bind promiscuously to human major histocompatibility complex class II (MHC II) molecules. Cellular immunoassays confirmed the immunogenicity of the synthesized epitope peptides, while in vitro binding assays revealed a range of peptide affinity for MHC II. A DNA construct was synthesized for bacterial expression of a recombinant protein vaccine which contained five epitopes with the highest affinity for human MHC II, each fused with leader and spacer peptides proposed to optimize epitope processing and presentation to T cell receptors. Recall assays of immune T lymphocytes obtained from human MHC II-expressing HLA-DR4 transgenic mice confirmed that 4 of the 5 epitope peptides were processed. Mice immunized with the epitope-based vaccine admixed with a synthetic oligodeoxynucleotide adjuvant or loaded into yeast glucan particles and then challenged intranasally with Coccidioides showed early lung infiltration of activated T helper-1 (Th1), Th2, and Th17 cells, elevated gamma interferon (IFN-γ) and interleukin (IL)-17 production, significant reduction of fungal burden, and prolongation of survival compared to nonvaccinated mice. This is the first report of an epitope-based vaccine against coccidioidomycosis.


Infection and Immunity | 2011

Vaccine Immunity to Coccidioidomycosis Occurs by Early Activation of Three Signal Pathways of T Helper Cell Response (Th1, Th2, and Th17)

Chiung Yu Hung; Ángel González; Marcel Wüthrich; Bruce S. Klein; Garry T. Cole

ABSTRACT We have previously reported that C57BL/6 mice vaccinated with a live, attenuated mutant of Coccidioides posadasii, referred to as the ΔT vaccine, are fully protected against pulmonary coccidioidomycosis. This model was used here to explore the nature of vaccine immunity during the initial 2-week period after intranasal challenge. Elevated neutrophil and eosinophil infiltration into the lungs of nonvaccinated mice contrasted with markedly reduced recruitment of these cells in vaccinated animals. The numbers of lung-infiltrated macrophages and dendritic cells showed a progressive increase in vaccinated mice and corresponded with reduction of the lung infection. Concentrations of selected inflammatory cytokines and chemokines were initially higher in lung homogenates of vaccinated mice but then generally decreased at 14 days postchallenge in correlation with containment of the organism and apparent dampening of the inflammation of host tissue. Profiles of cytokines detected in lung homogenates of ΔT-vaccinated mice were indicative of a mixed T helper 1 (Th1)-, Th2-, and Th17-type immune response, a conclusion which was supported by detection of lung infiltration of activated T cells with the respective CD4+ gamma interferon (IFN-γ)+, CD4+ interleukin-5 (IL-5)+, and CD4+ IL-17A+ phenotypes. While Th1 and Th2 immunity was separately dispensed of by genetic manipulation without loss of ΔT vaccine-mediated protection, loss of functional Th17 cells resulted in increased susceptibility to infection in immunized mice. Characterization of the early events of protective immunity to Coccidioides infection in vaccinated mice contributes to the identification of surrogates of immune defense and provides potential insights into the design of immunotherapeutic protocols for treatment of coccidioidomycosis.

Collaboration


Dive into the Chiung Yu Hung's collaboration.

Top Co-Authors

Avatar

Garry T. Cole

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Marcel Wüthrich

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bruce S. Klein

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Brady J. Hurtgen

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Kevin Galles

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanna I. Filutowicz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Vanessa LeBert

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Cody McMahan

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Gary R. Ostroff

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge