Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chodon Sass is active.

Publication


Featured researches published by Chodon Sass.


PLOS ONE | 2007

DNA barcoding in the cycadales: testing the potential of proposed barcoding markers for species identification of cycads.

Chodon Sass; Damon P. Little; Dennis W. Stevenson; Chelsea D. Specht

Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation—especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants.


Molecular Phylogenetics and Evolution | 2010

Phylogenetic estimation of the core Bromelioids with an emphasis on the genus Aechmea (Bromeliaceae).

Chodon Sass; Chelsea D. Specht

We developed a phylogeny of the core Bromelioideae including Aechmea and related genera, with the specific goals of investigating the monophyly of Aechmea and its allied genera, redefining monophyletic lineages for taxonomic revision, and investigating the biogeographic history of the group. Chloroplast, nuclear ribosomal, and low copy nuclear DNA sequences from 150 species within the Bromelioideae were used to develop the phylogeny. Phylogenies constructed with the combined four gene dataset provided sufficient resolution for investigating evolutionary relationships among species. Many genera are nested within Aechmea, or are rendered para- or polyphyletic by inclusion of Aechmea species. Several genera and subgenera of Aechmea with species in disjunct geographic locations are found to be polyphyletic, divided into separate clades that reflect geographic distribution rather than morphological similarity. This suggests that certain morphological characteristics thought to be indicative of common ancestry have instead evolved multiple times in parallel (i.e. ecological conservatism), possibly indicative of local adaptations to an epiphytic habit across the range of the Bromelioideae. These apparently homoplastic morphological characters used to assign species to genera or subgenera may be useful taxonomically when geography is also taken into account.


Molecular Ecology Resources | 2014

Sequence capture using PCR‐generated probes: a cost‐effective method of targeted high‐throughput sequencing for nonmodel organisms

Joshua V. Peñalba; Lydia L. Smith; Maria A. Tonione; Chodon Sass; Sarah M. Hykin; Phillip L. Skipwith; Jimmy A. McGuire; Rauri C. K. Bowie; Craig Moritz

Recent advances in high‐throughput sequencing library preparation and subgenomic enrichment methods have opened new avenues for population genetics and phylogenetics of nonmodel organisms. To multiplex large numbers of indexed samples while sequencing predominantly orthologous, targeted regions of the genome, we propose modifications to an existing, in‐solution capture that utilizes PCR products as target probes to enrich library pools for the genomic subset of interest. The sequence capture using PCR‐generated probes (SCPP) protocol requires no specialized equipment, is highly flexible and significantly reduces experimental costs for projects where a modest scale of genetic data is optimal (25–100 genomic loci). Our alterations enable application of this method across a wider phylogenetic range of taxa and result in higher capture efficiencies and coverage at each locus. Efficient and consistent capture over multiple SCPP experiments and at various phylogenetic distances is demonstrated, extending the utility of this method to both phylogeographic and phylogenomic studies.


PeerJ | 2016

Revisiting the Zingiberales: using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage

Chodon Sass; William J. D. Iles; Craig F. Barrett; Selena Y. Smith; Chelsea D. Specht

The Zingiberales are an iconic order of monocotyledonous plants comprising eight families with distinctive and diverse floral morphologies and representing an important ecological element of tropical and subtropical forests. While the eight families are demonstrated to be monophyletic, phylogenetic relationships among these families remain unresolved. Neither combined morphological and molecular studies nor recent attempts to resolve family relationships using sequence data from whole plastomes has resulted in a well-supported, family-level phylogenetic hypothesis of relationships. Here we approach this challenge by leveraging the complete genome of one member of the order, Musa acuminata, together with transcriptome information from each of the other seven families to design a set of nuclear loci that can be enriched from highly divergent taxa with a single array-based capture of indexed genomic DNA. A total of 494 exons from 418 nuclear genes were captured for 53 ingroup taxa. The entire plastid genome was also captured for the same 53 taxa. Of the total genes captured, 308 nuclear and 68 plastid genes were used for phylogenetic estimation. The concatenated plastid and nuclear dataset supports the position of Musaceae as sister to the remaining seven families. Moreover, the combined dataset recovers known intra- and inter-family phylogenetic relationships with generally high bootstrap support. This is a flexible and cost effective method that gives the broader plant biology community a tool for generating phylogenomic scale sequence data in non-model systems at varying evolutionary depths.


Molecular Phylogenetics and Evolution | 2017

The phylogeny of Heliconia (Heliconiaceae) and the evolution of floral presentation.

William J. D. Iles; Chodon Sass; Laura Lagomarsino; Gracie Benson-Martin; Heather E. Driscoll; Chelsea D. Specht

Heliconia (Heliconiaceae, order Zingiberales) is among the showiest plants of the Neotropical rainforest and represent a spectacular co-evolutionary radiation with hummingbirds. Despite the attractiveness and ecological importance of many Heliconia, the genus has been the subject of limited molecular phylogenetic studies. We sample seven markers from the plastid and nuclear genomes for 202 samples of Heliconia. This represents ca. 75% of accepted species and includes coverage of all taxonomic subgenera and sections. We date this phylogeny using fossils associated with other families in the Zingiberales; in particular we review and evaluate the Eocene fossil Ensete oregonense. We use this dated phylogenetic framework to evaluate the evolution of two components of flower orientation that are hypothesized to be important for modulating pollinator discrimination and pollen placement: resupination and erect versus pendant inflorescence habit. Our phylogenetic results suggest that the monophyletic Melanesian subgenus Heliconiopsis and a small clade of Ecuadorian species are together the sister group to the rest of Heliconia. Extant diversity of Heliconia originated in the Late Eocene (39Ma) with rapid diversification through the Early Miocene, making it the oldest known clade of hummingbird-pollinated plants. Most described subgenera and sections are not monophyletic, though closely related groups of species, often defined by shared geography, mirror earlier morphological cladistic analyses. Evaluation of changes in resupination and inflorescence habit suggests that these characters are more homoplasious than expected, and this largely explains the non-monophyly of previously circumscribed subgenera, which were based on these characters. We also find strong evidence for the correlated evolution of resupination and inflorescence habit. The correlated model suggests that the most recent common ancestor of all extant Heliconia had resupinate flowers and erect inflorescences. Finally, we note our nearly complete species sampling and dated phylogeny allow for an assessment of taxonomic history in terms of phylogenetic diversity. We find approximately half of the currently recognized species, corresponding to half of the phylogenetic diversity, have been described since 1975, highlighting the continued importance of basic taxonomic research and conservation initiatives to preserve both described and undiscovered species of Heliconia.


American Journal of Botany | 2018

Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots

Thomas J. Givnish; Alejandro Zuluaga; Daniel Spalink; Marybel Soto Gomez; Vivienne K. Y. Lam; Jeffrey M. Saarela; Chodon Sass; William J. D. Iles; Danilo José Lima de Sousa; Jim Leebens-Mack; J. Chris Pires; Wendy B. Zomlefer; Maria A. Gandolfo; Jerrold I. Davis; Dennis W. Stevenson; Claude W. dePamphilis; Chelsea D. Specht; Sean W. Graham; Craig F. Barrett; Cécile Ané

PREMISE OF THE STUDY We present the first plastome phylogeny encompassing all 77 monocot families, estimate branch support, and infer monocot-wide divergence times and rates of species diversification. METHODS We conducted maximum likelihood analyses of phylogeny and BAMM studies of diversification rates based on 77 plastid genes across 545 monocots and 22 outgroups. We quantified how branch support and ascertainment vary with gene number, branch length, and branch depth. KEY RESULTS Phylogenomic analyses shift the placement of 16 families in relation to earlier studies based on four plastid genes, add seven families, date the divergence between monocots and eudicots+Ceratophyllum at 136 Mya, successfully place all mycoheterotrophic taxa examined, and support recognizing Taccaceae and Thismiaceae as separate families and Arecales and Dasypogonales as separate orders. Only 45% of interfamilial divergences occurred after the Cretaceous. Net species diversification underwent four large-scale accelerations in PACMAD-BOP Poaceae, Asparagales sister to Doryanthaceae, Orchidoideae-Epidendroideae, and Araceae sister to Lemnoideae, each associated with specific ecological/morphological shifts. Branch ascertainment and support across monocots increase with gene number and branch length, and decrease with relative branch depth. Analysis of entire plastomes in Zingiberales quantifies the importance of non-coding regions in identifying and supporting short, deep branches. CONCLUSIONS We provide the first resolved, well-supported monocot phylogeny and timeline spanning all families, and quantify the significant contribution of plastome-scale data to resolving short, deep branches. We outline a new functional model for the evolution of monocots and their diagnostic morphological traits from submersed aquatic ancestors, supported by convergent evolution of many of these traits in aquatic Hydatellaceae (Nymphaeales).


American Journal of Botany | 2018

Pleistocene diversification in an ancient lineage: a role for glacial cycles in the evolutionary history of Dioon Lindl. (Zamiaceae)

Brian L. Dorsey; Timothy J. Gregory; Chodon Sass; Chelsea D. Specht

PREMISE OF THE STUDY Recent estimates of crown ages for cycad genera (Late Miocene) challenge us to consider what processes have produced the extant diversity of this ancient group in such relatively little time. Pleistocene climate change has driven major shifts in species distributions in Mexico and may have led to speciation in the genus Dioon by forcing populations to migrate up in elevation, thereby becoming separated by topography. METHODS We inferred orthologs from transcriptomes of five species and sequenced these in 42 individuals representing all Dioon species. From these data and published plastid sequences, we inferred dated species trees and lineage-specific diversification rates. KEY RESULTS Analyses of 84 newly sequenced nuclear orthologs and published plastid data confirm four major clades within Dioon, all of Pleistocene age. Gene tree analysis, divergence dates, and an increase in diversification rate support very recent and rapid divergence of extant taxa. CONCLUSIONS This study confirms the Pleistocene age of Dioon species and implicates Pleistocene climate change and established topography in lineage spitting. These results add to our understanding of the cycads as evolutionarily dynamic lineages, not relicts or evolutionary dead ends. We also find that well-supported secondary calibration points can be reliable in the absence of fossils. Our hypothesis of lineage splitting mediated by habitat shifts may be applicable to other taxa that are restricted to elevation specific ecotones.


Applications in Plant Sciences | 2017

Development of Single-Copy Nuclear Intron Markers for Species-Level Phylogenetics: Case Study with Paullinieae (Sapindaceae)

Joyce G Chery; Chodon Sass; Chelsea D. Specht

Premise of the study: We developed a bioinformatic pipeline that leverages a publicly available genome and published transcriptomes to design primers in conserved coding sequences flanking targeted introns of single-copy nuclear loci. Paullinieae (Sapindaceae) is used to demonstrate the pipeline. Methods and Results: Transcriptome reads phylogenetically closer to the lineage of interest are aligned to the closest genome. Single-nucleotide polymorphisms are called, generating a “pseudoreference” closer to the lineage of interest. Several filters are applied to meet the criteria of single-copy nuclear loci with introns of a desired size. Primers are designed in conserved coding sequences flanking introns. Using this pipeline, we developed nine single-copy nuclear intron markers for Paullinieae. Conclusions: This pipeline is highly flexible and can be used for any group with available genomic and transcriptomic resources. This pipeline led to the development of nine variable markers for phylogenetic study without generating sequence data de novo.


New Phytologist | 2018

Dense infraspecific sampling reveals rapid and independent trajectories of plastome degradation in a heterotrophic orchid complex

Craig F. Barrett; Susann Wicke; Chodon Sass


Archive | 2011

DNA Barcoding in the Cycadales

Chodon Sass; Damon P. Little; Dennis W. Stevenson; Chelsea D. Specht

Collaboration


Dive into the Chodon Sass's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig F. Barrett

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lydia L. Smith

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Moritz

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Damon P. Little

New York Botanical Garden

View shared research outputs
Researchain Logo
Decentralizing Knowledge