Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Choji Taya is active.

Publication


Featured researches published by Choji Taya.


Cell | 1998

Reduced Apoptosis and Cytochrome c–Mediated Caspase Activation in Mice Lacking Caspase 9

Keisuke Kuida; Tarik F Haydar; Chia-Yi Kuan; Yong Gu; Choji Taya; Hajime Karasuyama; Michael S.-S. Su; Pasko Rakic; Richard A. Flavell

Caspases are essential components of the mammalian cell death machinery. Here we test the hypothesis that Caspase 9 (Casp9) is a critical upstream activator of caspases through gene targeting in mice. The majority of Casp9 knockout mice die perinatally with a markedly enlarged and malformed cerebrum caused by reduced apoptosis during brain development. Casp9 deletion prevents activation of Casp3 in embryonic brains in vivo, and Casp9-deficient thymocytes show resistance to a subset of apoptotic stimuli, including absence of Casp3-like cleavage and delayed DNA fragmentation. Moreover, the cytochrome c-mediated cleavage of Casp3 is absent in the cytosolic extracts of Casp9-deficient cells but is restored after addition of in vitro-translated Casp9. Together, these results indicate that Casp9 is a critical upstream activator of the caspase cascade in vivo.


Nature | 2005

Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction

Kenya Honda; Yusuke Ohba; Hideyuki Yanai; Hideo Negishi; Tatsuaki Mizutani; Akinori Takaoka; Choji Taya; Tadatsugu Taniguchi

Robust type-I interferon (IFN-α/β) induction in plasmacytoid dendritic cells, through the activation of Toll-like receptor 9 (TLR9), constitutes a critical aspect of immunity. It is absolutely dependent on the transcription factor IRF-7, which interacts with and is activated by the adaptor MyD88. How plasmacytoid dendritic cells, but not other cell types (such as conventional dendritic cells), are able to activate the MyD88–IRF-7-dependent IFN induction pathway remains unknown. Here we show that the spatiotemporal regulation of MyD88–IRF-7 signalling is critical for a high-level IFN induction in response to TLR9 activation. The IFN-inducing TLR9 ligand, A/D-type CpG oligodeoxynucleotide (CpG-A), is retained for long periods in the endosomal vesicles of plasmacytoid dendritic cells, together with the MyD88–IRF-7 complex. However, in conventional dendritic cells, CpG-A is rapidly transferred to lysosomal vesicles. We further show that conventional dendritic cells can also mount a robust IFN induction if CpG-A is manipulated for endosomal retention using a cationic lipid. This strategy also allows us to demonstrate endosomal activation of the IFN pathway by the otherwise inactive TLR9 ligand B/K-type oligodeoxynucleotide (CpG-B). Thus, our study offers insights into the regulation of TLR9 signalling in space, potentially suggesting a new avenue for therapeutic intervention.


Nature Biotechnology | 2001

Diphtheria toxin receptor–mediated conditional and targeted cell ablation in transgenic mice

Michiko Saito; Takao Iwawaki; Choji Taya; Hiromichi Yonekawa; Munehiro Noda; Yoshiaki Inui; Eisuke Mekada; Yukio Kimata; Akio Tsuru; Kenji Kohno

Specific cell ablation is a useful method for analyzing the in vivo function of cells. We have developed a simple and sensitive method for conditional cell ablation in transgenic mice, called “toxin receptor–mediated cell knockout.” We expressed the diphtheria toxin (DT) receptor in transgenic mice using a hepatocyte-specific promoter and found that injection of DT caused fulminant hepatitis. Three independently established transgenic lines demonstrated a good correlation between the sensitivity of hepatocytes to DT and the expression level of the DT receptors. Moreover, the degree of hepatocyte damage was easily controlled over a wide range of doses of injected DT without any obvious abnormalities in other cells or tissues. This system is useful for generating mouse models of disease and for studying the recovery or regeneration of tissues from cell damage or loss. As DT is a potent inhibitor of protein synthesis in both growing and non-growing cells, the method is applicable to a wide range of cells and tissues in mice or in other DT-insensitive animals.


Nature Cell Biology | 2007

Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1

Miki Nishio; Ken-ichi Watanabe; Junko Sasaki; Choji Taya; Shunsuke Takasuga; Ryota Iizuka; Tamas Balla; Masakazu Yamazaki; Hiroshi Watanabe; Reietsu Itoh; Shoko Kuroda; Yasuo Horie; Irmgard Förster; Tak W. Mak; Hiromichi Yonekawa; Josef M. Penninger; Yasunori Kanaho; Akira Suzuki; Takehiko Sasaki

Proper neutrophil migration into inflammatory sites ensures host defense without tissue damage. Phosphoinositide 3-kinase (PI(3)K) and its lipid product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) regulate cell migration, but the role of PtdIns(3,4,5)P3-degrading enzymes in this process is poorly understood. Here, we show that Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), a PtdIns(3,4,5)P3 phosphatase, is a key regulator of neutrophil migration. Genetic inactivation of SHIP1 led to severe defects in neutrophil polarization and motility. In contrast, loss of the PtdIns(3,4,5)P3 phosphatase PTEN had no impact on neutrophil chemotaxis. To study PtdIns(3,4,5)P3 metabolism in living primary cells, we generated a novel transgenic mouse (AktPH–GFP Tg) expressing a bioprobe for PtdIns(3,4,5)P3. Time-lapse footage showed rapid, localized binding of AktPH–GFP to the leading edge membrane of chemotaxing ship1+/+AktPH–GFP Tg neutrophils, but only diffuse localization in ship1−/−AktPH–GFP Tg neutrophils. By directing where PtdIns(3,4,5)P3 accumulates, SHIP1 governs the formation of the leading edge and polarization required for chemotaxis.


Nature | 1998

Cloning of inv, a gene that controls left/right asymmetry and kidney development

Toshio Mochizuki; Yukio Saijoh; Ken Tsuchiya; Yasuaki Shirayoshi; Setsuo Takai; Choji Taya; Hiromichi Yonekawa; Kiyomi Yamada; Hiroshi Nihei; Norio Nakatsuji; Paul A. Overbeek; Hiroshi Hamada; Takahiko Yokoyama

Most vertebrate internal organs show a distinctive left/right asymmetry. The inv (inversion of embryonic turning) mutation in mice was created previously by random insertional mutagenesis; it produces both a constant reversal of left/right polarity (situs inversus) and cyst formation in the kidneys. Asymmetric expression patterns of the genes nodal and lefty are reversed in the inv mutant, indicating that inv may act early in left/right determination. Here we identify a new gene located at the inv locus. The encoded protein contains 15 consecutive repeats of an Ank/Swi6 motif, at its amino terminus. Expression of the gene is the highest in the kidneys and liver among adult tissues, and is seen in presomite-stage embryos. Analysis of the transgenic genome and the structure of the candidate gene indicate that the candidate gene is the only gene that is disrupted in inv mutants. Transgenic introduction of a minigene encoding the candidate protein restores normal left/right asymmetry and kidney development in the inv mutant, confirming the identity of the candidate gene.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity

Hideo Negishi; Tomoko Osawa; Kentaro Ogami; Xinshou Ouyang; Shinya Sakaguchi; Ryuji Koshiba; Hideyuki Yanai; Yoshinori Seko; Hiroshi Shitara; Keith Bishop; Hiromichi Yonekawa; Tomohiko Tamura; Tsuneyasu Kaisho; Choji Taya; Tadatsugu Taniguchi; Kenya Honda

A conundrum of innate antiviral immunity is how nucleic acid-sensing Toll-like receptors (TLRs) and RIG-I/MDA5 receptors cooperate during virus infection. The conventional wisdom has been that the activation of these receptor pathways evokes type I IFN (IFN) responses. Here, we provide evidence for a critical role of a Toll-like receptor 3 (TLR3)-dependent type II IFN signaling pathway in antiviral innate immune response against Coxsackievirus group B serotype 3 (CVB3), a member of the positive-stranded RNA virus family picornaviridae and most prevalent virus associated with chronic dilated cardiomyopathy. TLR3-deficient mice show a vulnerability to CVB3, accompanied by acute myocarditis, whereas transgenic expression of TLR3 endows even type I IFN signal-deficient mice resistance to CVB3 and other types of viruses, provided that type II IFN signaling remains intact. Taken together, our results indicate a critical cooperation of the RIG-I/MDA5-type I IFN and the TLR3-type II IFN signaling axes for efficient innate antiviral immune responses.


Journal of Virology | 2005

The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus.

Miki Ida-Hosonuma; Takuya Iwasaki; Tomoki Yoshikawa; Noriyo Nagata; Yuko Sato; Tetsutaro Sata; Mitsutoshi Yoneyama; Takashi Fujita; Choji Taya; Hiromichi Yonekawa; Satoshi Koike

ABSTRACT Poliovirus selectively replicates in neurons in the spinal cord and brainstem, although poliovirus receptor (PVR) expression is observed in both the target and nontarget tissues in humans and transgenic mice expressing human PVR (PVR-transgenic mice). We assessed the role of alpha/beta interferon (IFN) in determining tissue tropism by comparing the pathogenesis of the virulent Mahoney strain in PVR-transgenic mice and PVR-transgenic mice deficient in the alpha/beta IFN receptor gene (PVR-transgenic/Ifnar knockout mice). PVR-transgenic/Ifnar knockout mice showed increased susceptibility to poliovirus. After intravenous inoculation, severe lesions positive for the poliovirus antigen were detected in the liver, spleen, and pancreas in addition to the central nervous system. These results suggest that the alpha/beta IFN system plays an important role in determining tissue tropism by protecting nontarget tissues that are potentially susceptible to infection. We subsequently examined the expression of IFN and IFN-stimulated genes (ISGs) in the PVR-transgenic mice. In the nontarget tissues, ISGs were expressed even in the noninfected state, and the expression level increased soon after poliovirus infection. On the contrary, in the target tissues, ISG expression was low in the noninfected state and sufficient response after poliovirus infection was not observed. The results suggest that the unequal IFN response is one of the important determinants for the differential susceptibility of tissues to poliovirus. We consider that poliovirus replication was observed in the nontarget tissues of PVR-transgenic/Ifnar knockout mice because the IFN response was null in all tissues.


Journal of Biological Chemistry | 2007

Disruption of CXC Motif Chemokine Ligand-14 in Mice Ameliorates Obesity-induced Insulin Resistance

Noriko Nara; Yuki Nakayama; Shiki Okamoto; Hiroshi Tamura; Mari Kiyono; Masatoshi Muraoka; Kiyoko Tanaka; Choji Taya; Hiroshi Shitara; Rie Ishii; Hiromichi Yonekawa; Yasuhiko Minokoshi; Takahiko Hara

In obese individuals, white adipose tissue (WAT) is infiltrated by large numbers of macrophages, resulting in enhanced inflammatory responses that contribute to insulin resistance. Here we show that expression of the CXC motif chemokine ligand-14 (CXCL14), which targets tissue macrophages, is elevated in WAT of obese mice fed a high fat diet (HFD) compared with lean mice fed a regular diet. We found that HFD-fed CXCL14-deficient mice have impaired WAT macrophage mobilization and improved insulin responsiveness. Insulin-stimulated phosphorylation of Akt kinase in skeletal muscle was severely attenuated in HFD-fed CXCL14+/- mice but not in HFD-fed CXCL14-/- mice. The insulin-sensitive phenotype of CXCL14-/- mice after HFD feeding was prominent in female mice but not in male mice. HFD-fed CXCL14-/- mice were protected from hyperglycemia, hyperinsulinemia, and hypoadiponectinemia and did not exhibit increased levels of circulating retinol-binding protein-4 and increased expression of interleukin-6 in WAT. Transgenic overexpression of CXCL14 in skeletal muscle restored obesity-induced insulin resistance in CXCL14-/- mice. CXCL14 attenuated insulin-stimulated glucose uptake in cultured myocytes and to a lesser extent in cultured adipocytes. These results demonstrate that CXCL14 is a critical chemoattractant of WAT macrophages and a novel regulator of glucose metabolism that functions mainly in skeletal muscle.


Journal of Biological Chemistry | 1998

Efficient Conditional Transgene Expression in Hepatitis C Virus cDNA Transgenic Mice Mediated by the Cre/loxP System

Takaji Wakita; Choji Taya; Asao Katsume; Junko Kato; Hiromichi Yonekawa; Yumi Kanegae; Izumu Saito; Yukiko Hayashi; Morio Koike; Michinori Kohara

Conditional gene expression has greatly facilitated the examination of the functions of particular gene products. Using the Cre/loxP system, we developed efficient conditional transgene activation of hepatitis C virus (HCV) cDNA (nucleotides 294–3435) in transgenic mice. Efficient recombination was observed in transgenic mouse liver upon intravenous administration of adenovirus that expresses Cre DNA recombinase. After transgene activation, most hepatocytes were stained with anti-core polyclonal antibody, and 21-, 37-, and 64-kDa proteins were detected by Western blot analysis in liver lysates using anti-core, E1, and E2 monoclonal antibodies, respectively. Serum core protein was detected in transgenic mice 7 days after transgene activation with concurrent increases in serum alanine aminotransferase levels. Subsequently, an anti-core antibody response was detected 14 days after infection. Furthermore, a CD4 and CD8 positive cell depletion assay normalized both the serum alanine aminotransferase increases and pathological changes in the liver. These results suggest that HCV proteins are not directly cytopathic and that the host immune response plays a pivotal role in HCV infection. Thus, this HCV cDNA transgenic mouse provides a powerful tool with which to investigate the immune responses and pathogenesis of HCV infection.


Journal of Biological Chemistry | 2001

Inhibition of Cytochrome c Release in Fas-mediated Signaling Pathway in Transgenic Mice Induced to Express Hepatitis C Viral Proteins

Keigo Machida; Kyoko Tsukiyama-Kohara; Eiji Seike; Shigenobu Tone; Futoshi Shibasaki; Masumi Shimizu; Hidemi Takahashi; Yukiko K. Hayashi; Nobuaki Funata; Choji Taya; Hiromichi Yonekawa; Michinori Kohara

Persistent hepatitis C virus (HCV) infection often progresses to chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Numerous viruses have been reported to escape from apoptotic mechanism to maintain persistent infection. In the present study, we characterized the effect of HCV proteins on the Fas signal using HCV transgenic mice, which expressed core, E1, E2, and NS2 proteins, regulated by the Cre/loxP switching system. The transgene expression of HCV transgenic mice caused resistance to Fas antibody stimulated lethality. Apoptotic cell death in the liver of HCV protein expressing mice was significantly reduced compared with nonexpressing mice. Histopathological analysis and DNA fragmentation analysis revealed that the HCV proteins suppressed Fas-mediated apoptotic cell death. To identify the target pathway of HCV proteins, we characterized caspase activity. The activation of caspase-9 and -3/7 but not caspase-8 was inhibited by HCV proteins. Cytochromec release from mitochondria was inhibited in HCV protein expressing mice. These results indicated that the expression of HCV proteins may directly or indirectly inhibit Fas-mediated apoptosis and death in mice by repressing the release of cytochrome cfrom mitochondria, thereby suppressing caspase-9 and -3/7 activation. These results suggest that HCV may cause persistent infection, as a result of suppression of Fas-mediated cell death.

Collaboration


Dive into the Choji Taya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiaki Kikkawa

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Kunie Matsuoka

Japan Society for the Promotion of Science

View shared research outputs
Top Co-Authors

Avatar

Hajime Karasuyama

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Rie Ishii

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge