Chokyun Rha
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chokyun Rha.
Food Chemistry | 1978
Juhani Olkku; Chokyun Rha
Abstract Gelatinisation of wheat starch is reviewed, making comparisons with other starches. Starch in wheat kernel endosperm is briefly described. Various aspects of gelatinisation of starch in water are considered, including swelling and interaction with water before the onset of gelatinisation, increase in consistency during gelatinisation, gelatinisation temperature, types of gelatinised system and gel and paste formation upon cooling. In addition, the traditional rationale of gelatinisation and gelatinisation from the viewpoint of water mobility are discussed. Experimental methods used to study gelatinisation are also reviewed, as are the effects of starch concentration, protein, pentosans, surface active agents, fats, salt and sugars on gelatinisation and shear rate on consistency.
Applied and Environmental Microbiology | 2011
Charles F. Budde; Sebastian L. Riedel; Laura B. Willis; Chokyun Rha; Anthony J. Sinskey
ABSTRACT The polyhydroxyalkanoate (PHA) copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] has been shown to have potential to serve as a commercial bioplastic. Synthesis of P(HB-co-HHx) from plant oil has been demonstrated with recombinant Ralstonia eutropha strains expressing heterologous PHA synthases capable of incorporating HB and HHx into the polymer. With these strains, however, short-chain-length fatty acids had to be included in the medium to generate PHA with high HHx content. Our group has engineered two R. eutropha strains that accumulate high levels of P(HB-co-HHx) with significant HHx content directly from palm oil, one of the worlds most abundant plant oils. The strains express a newly characterized PHA synthase gene from the bacterium Rhodococcus aetherivorans I24. Expression of an enoyl coenzyme A (enoyl-CoA) hydratase gene (phaJ) from Pseudomonas aeruginosa was shown to increase PHA accumulation. Furthermore, varying the activity of acetoacetyl-CoA reductase (encoded by phaB) altered the level of HHx in the polymer. The strains with the highest PHA titers utilized plasmids for recombinant gene expression, so an R. eutropha plasmid stability system was developed. In this system, the essential pyrroline-5-carboxylate reductase gene proC was deleted from strain genomes and expressed from a plasmid, making the plasmid necessary for growth in minimal media. This study resulted in two engineered strains for production of P(HB-co-HHx) from palm oil. In palm oil fermentations, one strain accumulated 71% of its cell dry weight as PHA with 17 mol% HHx, while the other strain accumulated 66% of its cell dry weight as PHA with 30 mol% HHx.
Archive | 1975
Chokyun Rha
I. Survey of the Rheological Studies of Food Materials.- II. Theories and Principles of Viscosity.- III. Determination of Viscosity of Food Systems.- IV. Advances in Polymer Science and Engineering: Applications to Food Rheology.- V. Food Texture - Definition, Measurement and Relation to other Food Quality Attributes.- VI. Instrumentation for Determination of Mechanical Properties of Foods.- VII. Texture Measurements in Vegetables.- VIII. Mechanical Damage to the Processed Fruits and Vegetables.- IX. Alteration of Apparent Physical Properties of Fruit for Harvest.- X. Sorption Phenomena in Foods: Theoretical and Practical Aspects.- XI. Properties Controlling Mass Transfer in Foods and Related Model Systems.- XII. Factors Influencing the Instrumental and Sensory Evaluation of Food Emulsions.- XIII. Basic Concepts of Colorimetry.- XIV. Methods and Measurements of Food Color.- XV. Application of Color Theory to Commodity Areas.- XVI. Analysis and Processing of Colorimetric Data for Food Materials.- XVII. Thermal Properties of Food Materials.- XVIII. Some Physical Properties of Foods.- XIX. Compilation, Recall and Utilization of Data on Physical Properties of Food Materials.- Index of Names.- Index of Subjects.
Journal of Bacteriology | 2010
Charles F. Budde; Alison E. Mahan; Jingnan Lu; Chokyun Rha; Anthony J. Sinskey
The bacterium Ralstonia eutropha H16 synthesizes polyhydroxybutyrate (PHB) from acetyl coenzyme A (acetyl-CoA) through reactions catalyzed by a β-ketothiolase (PhaA), an acetoacetyl-CoA reductase (PhaB), and a polyhydroxyalkanoate synthase (PhaC). An operon of three genes encoding these enzymatic steps was discovered in R. eutropha and has been well studied. Sequencing and analysis of the R. eutropha genome revealed putative isologs for each of the PHB biosynthetic genes, many of which had never been characterized. In addition to the previously identified phaB1 gene, the genome contains the isologs phaB2 and phaB3 as well as 15 other potential acetoacetyl-CoA reductases. We have investigated the roles of the three phaB isologs by deleting them from the genome individually and in combination. It was discovered that the gene products of both phaB1 and phaB3 contribute to PHB biosynthesis in fructose minimal medium but that in plant oil minimal medium and rich medium, phaB3 seems to be unexpressed. This raises interesting questions concerning the regulation of phaB3 expression. Deletion of the gene phaB2 did not result in an observable phenotype under the conditions tested, although this gene does encode an active reductase. Addition of the individual reductase genes to the genome of the ΔphaB1 ΔphaB2 ΔphaB3 strain restored PHB production, and in the course of our complementation experiments, we serendipitously created a PHB-hyperproducing mutant. Measurement of the PhaB and PhaA activities of the mutant strains indicated that the thiolase reaction is the limiting step in PHB biosynthesis in R. eutropha H16 during nitrogen-limited growth on fructose.
Journal of Bacteriology | 2010
Christopher J. Brigham; Charles F. Budde; Jason W. Holder; Qiandong Zeng; Alison E. Mahan; Chokyun Rha; Anthony J. Sinskey
Ralstonia eutropha H16 is capable of growth and polyhydroxyalkanoate production on plant oils and fatty acids. However, little is known about the triacylglycerol and fatty acid degradation pathways of this bacterium. We compare whole-cell gene expression levels of R. eutropha H16 during growth and polyhydroxyalkanoate production on trioleate and fructose. Trioleate is a triacylglycerol that serves as a model for plant oils. Among the genes of note, two potential fatty acid β-oxidation operons and two putative lipase genes were shown to be upregulated in trioleate cultures. The genes of the glyoxylate bypass also exhibit increased expression during growth on trioleate. We observed that single β-oxidation operon deletion mutants of R. eutropha could grow using palm oil or crude palm kernel oil as the sole carbon source, regardless of which operon was present in the genome, but a double mutant was unable to grow under these conditions. A lipase deletion mutant did not exhibit a growth defect in emulsified oil cultures but did exhibit a phenotype in cultures containing nonemulsified oil. Mutants of the glyoxylate shunt gene for isocitrate lyase were able to grow in the presence of oils, while a malate synthase (aceB) deletion mutant grew more slowly than wild type. Gene expression under polyhydroxyalkanoate storage conditions was also examined. Many findings of this analysis confirm results from previous studies by our group and others. This work represents the first examination of global gene expression involving triacylglycerol and fatty acid catabolism genes in R. eutropha.
Biotechnology and Bioengineering | 2012
Sebastian L. Riedel; Johannes Bader; Christopher J. Brigham; Charles F. Budde; Zainal Abidin Mohd Yusof; Chokyun Rha; Anthony J. Sinskey
Improved production costs will accelerate commercialization of polyhydroxyalkanoate (PHA) polymer and PHA‐based products. Plant oils are considered favorable feedstocks, due to their high carbon content and relatively low price compared to sugars and other refined carbon feedstocks. Different PHA production strategies were compared using a recombinant strain of Ralstonia eutropha that produces high amounts of P(HB‐co‐HHx) when grown on plant oils. This R. eutropha strain was grown to high cell densities using batch, extended batch, and fed batch fermentation strategies, in which PHA accumulation was triggered by nitrogen limitation. While extended batch culture produced more biomass and PHA than batch culture, fed batch cultivation was shown to produce the highest levels of biomass and PHA. The highest titer achieved was over 139 g/L cell dry weight (CDW) of biomass with 74% of CDW as PHA containing 19mol% HHx. Our data suggest that the fermentation process is scalable with a space time yield (STY) better than 1 g PHA/L/h. The achieved biomass concentration and PHA yield are among the highest reported for the fermentation of recombinant R. eutropha strains producing P(HB‐co‐HHx). Biotechnol. Bioeng. 2012;109: 74–83.
Applied Microbiology and Biotechnology | 2011
Charles F. Budde; Sebastian L. Riedel; Florian Hübner; Stefan Risch; Milan K. Popović; Chokyun Rha; Anthony J. Sinskey
Polyhydroxyalkanoates (PHAs) are natural polyesters synthesized by bacteria for carbon and energy storage that also have commercial potential as bioplastics. One promising class of carbon feedstocks for industrial PHA production is plant oils, due to the high carbon content of these compounds. The bacterium Ralstonia eutropha accumulates high levels of PHA and can effectively utilize plant oil. Growth experiments that include plant oil, however, are difficult to conduct in a quantitative and reproducible manner due to the heterogeneity of the two-phase medium. In order to overcome this obstacle, a new culture method was developed in which palm oil was emulsified in growth medium using the glycoprotein gum arabic as the emulsifying agent. Gum arabic did not influence R. eutropha growth and could not be used as a nutrient source by the bacteria. R. eutropha was grown in the emulsified oil medium and PHA production was measured over time. Additionally, an extraction method was developed to monitor oil consumption. The new method described in this study allows quantitative, reproducible R. eutropha experiments to be performed with plant oils. The method may also prove useful for studying growth of different bacteria on plant oils and other hydrophobic carbon sources.
Applied Microbiology and Biotechnology | 2010
Yung-Hun Yang; Chrisstopher J. Brigham; Charles F. Budde; Paolo Boccazzi; Laura B. Willis; Mohd Ali Hassan; Zainal Abidin Mohd Yusof; Chokyun Rha; Anthony J. Sinskey
We employed systematic mixture analysis to determine optimal levels of acetate, propionate, and butyrate for cell growth and polyhydroxyalkanoate (PHA) production by Ralstonia eutropha H16. Butyrate was the preferred acid for robust cell growth and high PHA production. The 3-hydroxyvalerate content in the resulting PHA depended on the proportion of propionate initially present in the growth medium. The proportion of acetate dramatically affected the final pH of the growth medium. A model was constructed using our data that predicts the effects of these acids, individually and in combination, on cell dry weight (CDW), PHA content (%CDW), PHA production, 3HV in the polymer, and final culture pH. Cell growth and PHA production improved approximately 1.5-fold over initial conditions when the proportion of butyrate was increased. Optimization of the phosphate buffer content in medium containing higher amounts of butyrate improved cell growth and PHA production more than 4-fold. The validated organic acid mixture analysis model can be used to optimize R. eutropha culture conditions, in order to meet targets for PHA production and/or polymer HV content. By modifying the growth medium made from treated industrial waste, such as palm oil mill effluent, more PHA can be produced.
Bioresource Technology | 2012
Yoke-Ming Wong; Christopher J. Brigham; Chokyun Rha; Anthony J. Sinskey; Kumar Sudesh
The potential of plant oils as sole carbon sources for production of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction using the recombinant Cupriavidus necator strain Re2160/pCB113 has been investigated. Various types and concentrations of plant oils were evaluated for efficient conversion of P(3HB-co-3HHx) copolymer. Crude palm kernel oil (CPKO) at a concentration of 2.5 g/L was found to be most suitable for production of copolymer with a 3HHx content of approximately 70 mol%. The time profile of these cells was also examined in order to study the trend of 3HHx monomer incorporation, PHA production and PHA synthase activity. (1)H NMR and (13)C NMR analyses confirmed the presence of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction, in which monomers were not randomly distributed. The results of various characterization analyses revealed that the copolymers containing a high 3HHx monomer fraction demonstrated soft and flexible mechanical properties.
Applied and Environmental Microbiology | 2012
Christopher J. Brigham; Daan R. Speth; Chokyun Rha; Anthony J. Sinskey
ABSTRACT Poly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied. Our results confirm or lend support to previously reported results regarding the expression of PHB-related genes and enzymes. Additionally, genes for many different cellular processes, such as DNA replication, cell division, and translation, are selectively repressed during PHB production. In contrast, the expression levels of genes under the control of the alternative sigma factor σ54 increase sharply during PHB production and are repressed again during PHB utilization. Global gene regulation during PHB production is strongly reminiscent of the gene expression pattern observed during the stringent response in other species. Furthermore, a ppGpp synthase deletion mutant did not show an accumulation of PHB, and the chemical induction of the stringent response with dl-norvaline caused an increased accumulation of PHB in the presence of ammonium. These results indicate that the stringent response is required for PHB accumulation in R. eutropha, helping to elucidate a thus-far-unknown physiological basis for this process.