Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cholawat Pacharinsak is active.

Publication


Featured researches published by Cholawat Pacharinsak.


Comparative Medicine | 2008

Animal Models of Cancer Pain

Cholawat Pacharinsak; Alvin J. Beitz

Modern cancer therapies have significantly increased patient survival rates in both human and veterinary medicine. Since cancer patients live longer they now face new challenges resulting from severe, chronic tumor-induced pain. Unrelieved cancer pain significantly decreases the quality of life of such patients; thus the goal of pain management is to not only to alleviate pain, but also to maintain the patients physiological and psychological well-being. The major impediment for developing new treatments for cancer pain has been our limited knowledge of the basic mechanisms that drive cancer pain and the lack of adequate animal cancer pain models to study the molecular, biochemical and neurobiological pathways that generate and maintain cancer pain. However this situation has recently changed with the recent development of several novel animal models of cancer pain. This review will focus on describing these animal models, many of them in rodents, and reviewing some of the recent information gained from the use of these models to investigate the basic mechanims that underlie the development and maintenance of cancer pain. Animal models of cancer pain can be divided into the following five categories: bone cancer pain models, non-bone cancer pain models, cancer invasion pain models, cancer chemotherapeutic-induced peripheral neuropathy models, and spontaneous occurring cancer pain models. These models will be important not only for enhancing our knowledge of how cancer pain is generated, but more importantly for the development of novel therapeutic regimes to treat cancer pain in both domestic animals and humans.


Journal of Biological Chemistry | 2011

Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells

Andrew S. Lee; Dan Xu; Jordan R. Plews; Patricia K. Nguyen; Divya Nag; Jennifer Lyons; Leng Han; Shijun Hu; Feng Lan; Junwei Liu; Mei Huang; Kazim H. Narsinh; Long Ct; Patricia E. de Almeida; Benjamin Levi; Nigel G. Kooreman; Charles D. Bangs; Cholawat Pacharinsak; Fumiaki Ikeno; Alan C. Yeung; Sanjiv S. Gambhir; Robert C. Robbins; Michael T. Longaker; Joseph C. Wu

Derivation of patient-specific induced pluripotent stem cells (iPSCs) opens a new avenue for future applications of regenerative medicine. However, before iPSCs can be used in a clinical setting, it is critical to validate their in vivo fate following autologous transplantation. Thus far, preclinical studies have been limited to small animals and have yet to be conducted in large animals that are physiologically more similar to humans. In this study, we report the first autologous transplantation of iPSCs in a large animal model through the generation of canine iPSCs (ciPSCs) from the canine adipose stromal cells and canine fibroblasts of adult mongrel dogs. We confirmed pluripotency of ciPSCs using the following techniques: (i) immunostaining and quantitative PCR for the presence of pluripotent and germ layer-specific markers in differentiated ciPSCs; (ii) microarray analysis that demonstrates similar gene expression profiles between ciPSCs and canine embryonic stem cells; (iii) teratoma formation assays; and (iv) karyotyping for genomic stability. Fate of ciPSCs autologously transplanted to the canine heart was tracked in vivo using clinical positron emission tomography, computed tomography, and magnetic resonance imaging. To demonstrate clinical potential of ciPSCs to treat models of injury, we generated endothelial cells (ciPSC-ECs) and used these cells to treat immunodeficient murine models of myocardial infarction and hindlimb ischemia.


Circulation Research | 2012

Microfluidic Single-Cell Analysis Shows That Porcine Induced Pluripotent Stem Cell–Derived Endothelial Cells Improve Myocardial Function by Paracrine Activation

Mingxia Gu; Patricia K. Nguyen; Andrew S. Lee; Dan Xu; Shijun Hu; Jordan R. Plews; Leng Han; Bruno C. Huber; Won Hee Lee; Yongquan Gong; Patricia E. de Almeida; Jennifer Lyons; Fumi Ikeno; Cholawat Pacharinsak; Andrew J. Connolly; Sanjiv S. Gambhir; Robert C. Robbins; Michael T. Longaker; Joseph C. Wu

Rationale: Induced pluripotent stem cells (iPSCs) hold great promise for the development of patient-specific therapies for cardiovascular disease. However, clinical translation will require preclinical optimization and validation of large-animal iPSC models. Objective: To successfully derive endothelial cells from porcine iPSCs and demonstrate their potential utility for the treatment of myocardial ischemia. Methods and Results: Porcine adipose stromal cells were reprogrammed to generate porcine iPSCs (piPSCs). Immunohistochemistry, quantitative PCR, microarray hybridization, and angiogenic assays confirmed that piPSC-derived endothelial cells (piPSC-ECs) shared similar morphological and functional properties as endothelial cells isolated from the autologous pig aorta. To demonstrate their therapeutic potential, piPSC-ECs were transplanted into mice with myocardial infarction. Compared with control, animals transplanted with piPSC-ECs showed significant functional improvement measured by echocardiography (fractional shortening at week 4: 27.2±1.3% versus 22.3±1.1%; P<0.001) and MRI (ejection fraction at week 4: 45.8±1.3% versus 42.3±0.9%; P<0.05). Quantitative protein assays and microfluidic single-cell PCR profiling showed that piPSC-ECs released proangiogenic and antiapoptotic factors in the ischemic microenvironment, which promoted neovascularization and cardiomyocyte survival, respectively. Release of paracrine factors varied significantly among subpopulations of transplanted cells, suggesting that transplantation of specific cell populations may result in greater functional recovery. Conclusions: In summary, this is the first study to successfully differentiate piPSCs-ECs from piPSCs and demonstrate that transplantation of piPSC-ECs improved cardiac function after myocardial infarction via paracrine activation. Further development of these large animal iPSC models will yield significant insights into their therapeutic potential and accelerate the clinical translation of autologous iPSC-based therapy.


Circulation Research | 2012

Microfluidic Single Cell Analysis Show Porcine Induced Pluripotent Stem Cell–Derived Endothelial Cells Improve Myocardial Function by Paracrine Activation

Mingxia Gu; Patricia K. Nguyen; Andrew S. Lee; Dan Xu; Shijun Hu; Jordan R. Plews; Leng Han; Bruno C. Huber; Won Hee Lee; Yongquan Gong; Patricia E. de Almeida; Jennifer Lyons; Fumi Ikeno; Cholawat Pacharinsak; Andrew J. Connolly; Sanjiv S. Gambhir; Robert C. Robbins; Michael T. Longaker; Joseph C. Wu

Rationale: Induced pluripotent stem cells (iPSCs) hold great promise for the development of patient-specific therapies for cardiovascular disease. However, clinical translation will require preclinical optimization and validation of large-animal iPSC models. Objective: To successfully derive endothelial cells from porcine iPSCs and demonstrate their potential utility for the treatment of myocardial ischemia. Methods and Results: Porcine adipose stromal cells were reprogrammed to generate porcine iPSCs (piPSCs). Immunohistochemistry, quantitative PCR, microarray hybridization, and angiogenic assays confirmed that piPSC-derived endothelial cells (piPSC-ECs) shared similar morphological and functional properties as endothelial cells isolated from the autologous pig aorta. To demonstrate their therapeutic potential, piPSC-ECs were transplanted into mice with myocardial infarction. Compared with control, animals transplanted with piPSC-ECs showed significant functional improvement measured by echocardiography (fractional shortening at week 4: 27.2±1.3% versus 22.3±1.1%; P<0.001) and MRI (ejection fraction at week 4: 45.8±1.3% versus 42.3±0.9%; P<0.05). Quantitative protein assays and microfluidic single-cell PCR profiling showed that piPSC-ECs released proangiogenic and antiapoptotic factors in the ischemic microenvironment, which promoted neovascularization and cardiomyocyte survival, respectively. Release of paracrine factors varied significantly among subpopulations of transplanted cells, suggesting that transplantation of specific cell populations may result in greater functional recovery. Conclusions: In summary, this is the first study to successfully differentiate piPSCs-ECs from piPSCs and demonstrate that transplantation of piPSC-ECs improved cardiac function after myocardial infarction via paracrine activation. Further development of these large animal iPSC models will yield significant insights into their therapeutic potential and accelerate the clinical translation of autologous iPSC-based therapy.


Pain | 2008

NK-1 receptors in the rostral ventromedial medulla contribute to hyperalgesia produced by intraplantar injection of capsaicin

Cholawat Pacharinsak; Sergey G. Khasabov; Alvin J. Beitz; Donald A. Simone

Abstract The rostral ventromedial medulla (RVM) is an area of the brainstem involved in the descending modulation of nociception at the level of the spinal cord. Although the RVM is involved in the inhibition or facilitation of nociception, the underlying mechanisms are not understood. Here we examined the role of the neuropeptide substance P and neurokinin‐1 (NK‐1) receptors located in the RVM on withdrawal responses evoked by mechanical and heat stimuli applied to the rat hindpaw under normal conditions and during hyperalgesia produced by capsaicin. The mechanical withdrawal threshold was obtained using von Frey monofilaments applied to the plantar surface of the hindpaw. Sensitivity to heat was determined by measuring the latency to withdrawal from radiant heat applied to the plantar surface. Mechanical and heat hyperalgesia were defined as a decrease in withdrawal response threshold or latency, respectively. Rats were prepared with a chronic cannula and either vehicle or the NK‐1 receptor antagonists, L‐733,060 or RP‐67580, was injected into the RVM. Paw withdrawal responses were obtained before and after RVM injection, and then at 5, 30, and 60 min after an intraplantar injection of capsaicin (10 μg). Injection of the NK‐1 antagonists at doses of 0.5 pmol or higher did not alter withdrawal responses to mechanical or heat stimuli under normal conditions but reduced the duration of nocifensive behavior and the mechanical and heat hyperalgesia produced by capsaicin. These findings suggest that the activation of NK‐1 receptors in the RVM contributes to the hyperalgesia produced by capsaicin.


Journal of Neurophysiology | 2012

Differential modulation of neurons in the rostral ventromedial medulla by neurokinin-1 receptors.

Thaddeus S. Brink; Cholawat Pacharinsak; Sergey G. Khasabov; Alvin J. Beitz; Donald A. Simone

The rostral ventromedial medulla (RVM) is part of descending circuitry that modulates nociceptive processing at the level of the spinal cord. RVM output can facilitate pain transmission under certain conditions such as inflammation, and thereby contribute to hyperalgesia. Evidence suggests that substance P and activation of neurokinin-1 (NK-1) receptors in the RVM are involved in descending facilitation of nociception. We showed previously that injection of NK-1 receptor antagonists into the RVM attenuated mechanical and heat hyperalgesia produced by intraplantar injection of capsaicin. Furthermore, intraplantar injection of capsaicin excited ON cells in the RVM and inhibited ongoing activity of OFF cells. In the present studies, we therefore examined changes in responses of RVM neurons to mechanical and heat stimuli after intraplantar injection of capsaicin and determined the role of NK-1 receptors by injecting a NK-1 receptor antagonist into the RVM prior to capsaicin. After capsaicin injection, excitatory responses of ON cells and inhibitory responses of OFF cells evoked by mechanical and heat stimuli applied to the injected, but not contralateral, paw were increased. Injection of the NK-1 antagonist L-733,060 did not alter evoked responses of ON or OFF cells but attenuated the capsaicin-evoked enhanced responses of ON cells to mechanical and heat stimuli with less of an effect on the enhanced inhibitory responses of OFF cells. These data support the notion that descending facilitation from RVM contributes to hyperalgesia and that NK-1 receptors, presumably located on ON cells, play an important role in initiating descending facilitation of nociceptive transmission.


Current protocols in mouse biology | 2015

Mouse Anesthesia and Analgesia

Sean C. Adams; Cholawat Pacharinsak

Providing anesthesia and analgesia for mouse subjects is a common and critical practice in the laboratory setting. These practices are necessary for performing invasive procedures, achieving prolonged immobility for sensitive imaging modalities (magnetic resonance imaging for instance), and providing intra‐ and post‐procedural pain relief. In addition to facilitating the procedures performed by the investigator, the provision of anesthesia and analgesia is crucial for the preservation of animal welfare and for humane treatment of animals used in research. Furthermore, anesthesia and analgesia are important components of animal use protocols reviewed by Institutional Animal Care and Use Committees, requiring careful consideration and planning for the particular animal model. In this article, we provide technical outlines for the investigator covering the provision of anesthesia by two routes (injectable and inhalant), guidelines for monitoring anesthesia, current techniques for recognition of pain, and considerations for administering preventative analgesia.


Journal of Medical Primatology | 2011

Comparison of rectal and tympanic core body temperature measurement in adult Guyanese squirrel monkeys (Saimiri sciureus sciureus)

Long Ct; Cholawat Pacharinsak; Katechan Jampachaisri; Gabriel P McKeon; Antwain M Howard; Megan A. Albertelli; Stephen A. Felt

Background  Measuring core body temperature in a manner that is safe for animals and veterinary personnel is an important part of a physical examination. For nonhuman primates, this can involve increased restraint, additional stress, as well as the use of anesthetics and their deleterious effects on body temperature measurements. The purpose of this study was to compare two non‐invasive methods of infrared tympanic thermometry to standard rectal thermometry in adult squirrel monkeys.


Lab Animal | 2012

Endotracheal intubation in swine.

Helen H Chum; Cholawat Pacharinsak

Swine are commonly used as research models for cardiovascular surgery and disease, gastrointestinal disease, organ transplantation and intra-renal surgery. These surgical models require anesthesia and, consequently, endotracheal intubation in order to protect the airway; prevent aspiration of saliva, blood and foreign materials; and maintain positive pressure ventilation of the animal. Successful intubation is vital to the stable maintenance of swine under inhalational anesthesia. Here we discuss key features of swine anatomy that make intubation challenging, equipment necessary for successful intubation and techniques for endotracheal intubation in swine.


Circulation Research | 2012

Microfluidic Single-Cell Analysis Shows That Porcine Induced Pluripotent Stem Cell–Derived Endothelial Cells Improve Myocardial Function by Paracrine ActivationNovelty and Significance

Mingxia Gu; Patricia K. Nguyen; Andrew S. Lee; Dan Xu; Shijun Hu; Jordan R. Plews; Leng Han; Bruno C. Huber; Won Hee Lee; Yongquan Gong; Patricia E. de Almeida; Jennifer Lyons; Fumi Ikeno; Cholawat Pacharinsak; Andrew J. Connolly; Sanjiv S. Gambhir; Robert C. Robbins; Michael T. Longaker; Joseph C. Wu

Rationale: Induced pluripotent stem cells (iPSCs) hold great promise for the development of patient-specific therapies for cardiovascular disease. However, clinical translation will require preclinical optimization and validation of large-animal iPSC models. Objective: To successfully derive endothelial cells from porcine iPSCs and demonstrate their potential utility for the treatment of myocardial ischemia. Methods and Results: Porcine adipose stromal cells were reprogrammed to generate porcine iPSCs (piPSCs). Immunohistochemistry, quantitative PCR, microarray hybridization, and angiogenic assays confirmed that piPSC-derived endothelial cells (piPSC-ECs) shared similar morphological and functional properties as endothelial cells isolated from the autologous pig aorta. To demonstrate their therapeutic potential, piPSC-ECs were transplanted into mice with myocardial infarction. Compared with control, animals transplanted with piPSC-ECs showed significant functional improvement measured by echocardiography (fractional shortening at week 4: 27.2±1.3% versus 22.3±1.1%; P<0.001) and MRI (ejection fraction at week 4: 45.8±1.3% versus 42.3±0.9%; P<0.05). Quantitative protein assays and microfluidic single-cell PCR profiling showed that piPSC-ECs released proangiogenic and antiapoptotic factors in the ischemic microenvironment, which promoted neovascularization and cardiomyocyte survival, respectively. Release of paracrine factors varied significantly among subpopulations of transplanted cells, suggesting that transplantation of specific cell populations may result in greater functional recovery. Conclusions: In summary, this is the first study to successfully differentiate piPSCs-ECs from piPSCs and demonstrate that transplantation of piPSC-ECs improved cardiac function after myocardial infarction via paracrine activation. Further development of these large animal iPSC models will yield significant insights into their therapeutic potential and accelerate the clinical translation of autologous iPSC-based therapy.

Collaboration


Dive into the Cholawat Pacharinsak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Xu

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leng Han

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge