Chong M. Wang
Pacific Northwest National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chong M. Wang.
Journal of Materials Chemistry | 2010
Yuyan Shao; Jun Wang; Mark H. Engelhard; Chong M. Wang; Yuehe Lin
Graphene oxide is electrochemically reduced which is called electrochemically reduced graphene oxide (ER-G). ER-G is characterized with scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The oxygen content is significantly decreased and the sp2 carbon is restored after electrochemical reduction. ER-G exhibits much higher electrochemical capacitance and cycling durability than carbon nanotubes (CNTs) and chemically reduced graphene; the specific capacitance measured with cyclic voltammetry (20 mV s−1) is ∼165, ∼86, and ∼100 F g−1 for ER-G, CNTs, and chemically reduced graphene, respectively. The electrochemical reduction of oxygen and hydrogen peroxide are greatly enhanced on ER-G electrodes as compared with CNTs. ER-G has shown promising features for applications in energy storage, biosensors, and electrocatalysis.
Nature Communications | 2014
Xiaolin Li; Meng Gu; Shenyang Y. Hu; Rhiannon Kennard; Pengfei Yan; Xilin Chen; Chong M. Wang; Michael J. Sailor; Ji-Guang Zhang; Jun Liu
Nanostructured silicon is a promising anode material for high-performance lithium-ion batteries, yet scalable synthesis of such materials, and retaining good cycling stability in high loading electrode remain significant challenges. Here we combine in-situ transmission electron microscopy and continuum media mechanical calculations to demonstrate that large (>20 μm) mesoporous silicon sponge prepared by the anodization method can limit the particle volume expansion at full lithiation to ~30% and prevent pulverization in bulk silicon particles. The mesoporous silicon sponge can deliver a capacity of up to ~750 mAh g(-1) based on the total electrode weight with >80% capacity retention over 1,000 cycles. The first cycle irreversible capacity loss of pre-lithiated electrode is <5%. Bulk electrodes with an area-specific-capacity of ~1.5 mAh cm(-2) and ~92% capacity retention over 300 cycles are also demonstrated. The insight obtained from this work also provides guidance for the design of other materials that may experience large volume variation during operations.
Materials Today | 2006
Scott A. Chambers; Timothy C. Droubay; Chong M. Wang; Kevin M. Rosso; Steve M. Heald; Dana A. Schwartz; Kevin R. Kittilstved; Daniel R. Gamelin
Over the past five years, considerable work has been carried out in the exploration of candidate diluted oxide magnetic semiconductors with high Curie temperatures. Fueled by early experimental results and theoretical predictions, claims of ferromagnetism at and above room temperature in doped oxides have abounded. In general, neither the true nature of these materials nor the physical causes of the magnetism have been adequately determined. It is now apparent that these dilute magnetic systems are deceptively complex. We consider two well-characterizedn-type magnetically doped oxide semiconductors and explore the relationship between donor electrons and ferromagnetism.
Nano Letters | 2011
Chong M. Wang; Wu Xu; Jun Liu; Ji-Guang Zhang; Laxmikant V. Saraf; Bruce W. Arey; Daiwon Choi; Zhenguo Yang; Jie Xiao; Suntharampillai Thevuthasan; Donald R. Baer
Recently we have reported structural transformation features of SnO(2) upon initial charging using a configuration that leads to the sequential lithiation of SnO(2) nanowire from one end to the other (Huang et al. Science2010, 330, 1515). A key question to be addressed is the lithiation behavior of the nanowire when it is fully soaked into the electrolyte (Chiang Science2010, 330, 1485). This Letter documents the structural characteristics of SnO(2) upon initial charging based on a battery assembled with a single nanowire anode, which is fully soaked (immersed) into an ionic liquid based electrolyte using in situ transmission electron microscopy. It has been observed that following the initial charging the nanowire retained a wire shape, although highly distorted. The originally straight wire is characterized by a zigzag structure following the phase transformation, indicating that during the phase transformation of SnO(2) + Li ↔ Li(x)Sn + Li(y)O, the nanowire was subjected to severe deformation, as similarly observed for the case when the SnO(2) was charged sequentially from one end to the other. Transmission electron microscopy imaging revealed that the Li(x)Sn phase possesses a spherical morphology and is embedded into the amorphous Li(y)O matrix, indicating a simultaneous partitioning and coarsening of Li(x)Sn through Sn and Li diffusion in the amorphous matrix accompanied the phase transformation. The presently observed composite configuration gives detailed information on the structural change and how this change takes place on nanometer scale.
Nano Letters | 2013
Bin Li; Meng Gu; Zimin Nie; Yuyan Shao; Qingtao Luo; Xiaoliang Wei; Xiaolin Li; Jie Xiao; Chong M. Wang; Vincent L. Sprenkle; Wei Wang
Employing electrolytes containing Bi(3+), bismuth nanoparticles are synchronously electrodeposited onto the surface of a graphite felt electrode during operation of an all-vanadium redox flow battery (VRFB). The influence of the Bi nanoparticles on the electrochemical performance of the VRFB is thoroughly investigated. It is confirmed that Bi is only present at the negative electrode and facilitates the redox reaction between V(II) and V(III). However, the Bi nanoparticles significantly improve the electrochemical performance of VRFB cells by enhancing the kinetics of the sluggish V(II)/V(III) redox reaction, especially under high power operation. The energy efficiency is increased by 11% at high current density (150 mA·cm(-2)) owing to faster charge transfer as compared with one without Bi. The results suggest that using Bi nanoparticles in place of noble metals offers great promise as high-performance electrodes for VRFB application.
Journal of Materials Chemistry | 2012
Xiaolin Li; Praveen Meduri; Xilin Chen; Wen N. Qi; Mark H. Engelhard; Wu Xu; Fei Ding; Jie Xiao; Wei Wang; Chong M. Wang; Ji-Guang Zhang; Jun Liu
Hollow core–shell structured porous Si–C nanocomposites with void space up to tens of nanometres are designed to accommodate the volume expansion during lithiation for high-performance Li-ion battery anodes. An initial capacity of ∼760 mA h g−1 after formation cycles (based on the entire electrode weight) with ∼86% capacity retention over 100 cycles is achieved at a current density of 1 A g−1. Good rate performance is also demonstrated.
Applied Physics Letters | 2003
Scott A. Chambers; Timothy C. Droubay; Chong M. Wang; Alan S. Lea; R. F. C. Farrow; Liesl Folks; V. R. Deline; Simone Anders
We show that under certain conditions, highly Co-enriched TiO2 anatase clusters nucleate on epitaxial TiO2 anatase grown on LaAlO3(001) by oxygen plasma assisted molecular beam epitaxy. In the most extreme cases, virtually all incident Co segregates to the clusters, yielding a nanoscale ferromagnetic phase that is not ferromagnetic in homogeneous films of the same Co concentration. The nucleation of this phase simultaneous with continuous epitaxial film growth must be carefully monitored in order to avoid drawing false conclusions about the film structure.
Nano Letters | 2014
Bin Li; Meng Gu; Zimin Nie; Xiaoliang Wei; Chong M. Wang; Vincent L. Sprenkle; Wei Wang
A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). Cyclic voltammetry (CV) study confirmed that Nb2O5 has catalytic effects toward redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side to facilitate the electrochemical kinetics of the vanadium redox reactions. Because of poor conductivity of Nb2O5, the performance of the Nb2O5 loaded electrodes is strongly dependent on the nanosize and uniform distribution of catalysts on GF surfaces. Accordingly, an optimal amount of W-doped Nb2O5 nanorods with minimum agglomeration and improved distribution on GF surfaces are established by adding water-soluble compounds containing tungsten (W) into the precursor solutions. The corresponding energy efficiency is enhanced by ∼10.7% at high current density (150 mA·cm(-2)) as compared with one without catalysts. Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. These results suggest that Nb2O5-based nanorods, replacing expensive noble metals, uniformly decorating GFs holds great promise as high-performance electrodes for VRB applications.
Thin Solid Films | 2002
Scott A. Chambers; Chong M. Wang; Suntharampillai Thevuthasan; Timothy C. Droubay; David E. McCready; Alan S. Lea; V. Shutthanandan; Charles F. Windisch
Abstract We have investigated the heteroepitaxial growth and materials properties of pure and Co-doped TiO 2 anatase on SrTiO 3 (001) and LaAlO 3 (001), grown by oxygen plasma assisted molecular beam epitaxy. This material is a promising new diluted magnetic semiconductor that shows large magnetization and a Curie temperature well above room temperature. We have found that epitaxial films with the highest crystalline quality and most uniform distribution of Co result when a rather slow growth rate (∼0.01 nm/s) is used over a substrate temperature range of 550–600 °C on LaAlO 3 (001). These conditions result in layer-by-layer growth of single-crystal films and a very low density of extremely small nanocrystalline inclusions. In contrast, growth at a higher rate (∼0.04 nm/s) leads to extensive formation of secondary-phase rutile nanocrystals to which Co diffuses and segregates. The rutile nanocrystals nucleate on the evolving anatase film surface in such a way that lattice strain between the two phases is minimized. Cobalt appears to substitute for Ti in the lattice and exhibits a +2 formal oxidation state. Both pure and Co-doped films can be grown as n-type semiconductors by controlled incorporation of oxygen atom vacancies. Free electrons are required to couple the Co(II) spin to a ferromagnetic state.
Nano Letters | 2014
Yuyan Shao; Meng Gu; Xiaolin Li; Zimin Nie; Pengjian Zuo; Guosheng Li; Tianbiao Liu; Jie Xiao; Yingwen Cheng; Chong M. Wang; Ji-Guang Zhang; Jun Liu
Rechargeable magnesium batteries have attracted wide attention for energy storage. Currently, most studies focus on Mg metal as the anode, but this approach is still limited by the properties of the electrolyte and poor control of the Mg plating/stripping processes. This paper reports the synthesis and application of Bi nanotubes as a high-performance anode material for rechargeable Mg ion batteries. The nanostructured Bi anode delivers a high reversible specific capacity (350 mAh/gBi or 3430 mAh/cm(3)Bi), excellent stability, and high Coulombic efficiency (95% initial and very close to 100% afterward). The good performance is attributed to the unique properties of in situ formed, interconnected nanoporous bismuth. Such nanostructures can effectively accommodate the large volume change without losing electric contact and significantly reduce diffusion length for Mg(2+). Significantly, the nanostructured Bi anode can be used with conventional electrolytes which will open new opportunities to study Mg ion battery chemistry and further improve its properties.