Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chong Tai Kim is active.

Publication


Featured researches published by Chong Tai Kim.


Phytotherapy Research | 2011

Effects of Capsaicin on Lipid Catabolism in 3T3-L1 Adipocytes

Mak Soon Lee; Chong Tai Kim; In Hwan Kim; Yangha Kim

Capsaicin (8‐methyl‐N‐vanillyl‐6‐nonenamide) is a pungent ingredient of red peppers, and has been reported to reduce body weight gain and adiposity in rodents. The present study investigated the effects of capsaicin on lipid catabolism in differentiated 3T3‐L1 adipocytes. Capsaicin decreased the intracellular lipid content in a concentration‐dependent manner. The release of glycerol into the medium was increased by the addition of capsaicin. The mRNA levels of genes involved in lipid catabolism such as hormone sensitive lipase (HSL), carnitine palmitoyl transferase‐Iα (CPTI‐α) and uncoupling protein 2 (UCP2) were up‐regulated significantly. These results suggest that capsaicin exerts its lipolytic action by increasing the hydrolysis of triacylglycerol in adipocytes, and that these effects are mediated at least partially by regulation of the expression of multiple genes that are involved in the lipid catabolic pathway, such as HSL and CPT‐Iα, and those involved in thermogenesis such as UCP2. Copyright


International Journal of Molecular Sciences | 2012

Ginsenoside RG3 reduces lipid accumulation with AMP-activated protein kinase (AMPK) activation in HepG2 cells

Seohyun Lee; Mak Soon Lee; Chong Tai Kim; In Hwan Kim; Yangha Kim

Cardiovascular disease (CVD) is one of the main causes of mortality worldwide, and dyslipidemia is a major risk factor for CVD. Ginseng has been widely used in the clinic to treat CVD. Ginsenoside Rg3, one of the major active components of ginseng, has been reported to exhibit antiobesity, antidiabetic, and cardioprotective effects. However, the effect of ginsenoside Rg3 on hepatic lipid metabolism remains unclear. Therefore, we investigated whether ginsenoside Rg3 would regulate hepatic lipid metabolism with AMP-activated protein kinase (AMPK) activation in HepG2 cells. Ginsenoside Rg3 significantly reduced hepatic cholesterol and triglyceride levels. Furthermore, ginsenoside Rg3 inhibited expression of sterol regulatory element binding protein-2 (SREBP-2) and 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR). Ginsenoside Rg3 increased activity of AMPK, a major regulator of energy metabolism. These results suggest that ginsenoside Rg3 reduces hepatic lipid accumulation with inhibition of SREBP-2 and HMGCR expression and stimulation of AMPK activity in HepG2 cells. Therefore, ginsenoside Rg3 may be beneficial as a food ingredient to lower the risk of CVD by regulating dyslipidemia.


Journal of Nutrition | 2011

Reduction of Body Weight by Dietary Garlic Is Associated with an Increase in Uncoupling Protein mRNA Expression and Activation of AMP-Activated Protein Kinase in Diet-Induced Obese Mice

Mak Soon Lee; In Hwan Kim; Chong Tai Kim; Yangha Kim

This study investigated the antiobesity effect of garlic in diet-induced obese mice. Male C57BL/6J mice were fed a high-fat diet (45% fat) for 8 wk to induce obesity. Subsequently, they were fed a high-fat control diet, high-fat diets supplemented with 2%, or 5% garlic (wt:wt) for another 7 wk. Dietary garlic reduced body weight and the mass of various white adipose tissue deposits and also ameliorated the high-fat diet-induced abnormal plasma and liver lipid profiles. Garlic supplementation significantly decreased the mRNA levels of adipogenic genes in white adipose tissues (WAT). However, consumption of garlic increased the expression of mRNA for uncoupling proteins in brown adipose tissue (BAT), liver, WAT, and skeletal muscle. Mice treated with garlic maintained a significantly higher body temperature than untreated mice during a 6-h, 4°C cold challenge and, notably, AMP-activated protein kinase (AMPK) activity was stimulated in BAT, liver, WAT, and skeletal muscle. These results suggest that the antiobesity effects of garlic were at least partially mediated via activation of AMPK, increased thermogenesis, and decreased expression of multiple genes involved in adipogenesis.


Journal of the Science of Food and Agriculture | 2011

A comparison between high hydrostatic pressure extraction and heat extraction of ginsenosides from ginseng (Panax ginseng CA Meyer).

Hyun Sun Lee; Hyun Jung Lee; Hyung Jo Yu; Do Weon Ju; Yoonsook Kim; Chong Tai Kim; Chul Jin Kim; Yong Jin Cho; Nam-Soo Kim; Sin Yang Choi; Hyung Joo Suh

BACKGROUND To determine biomaterial components, the components must first be transferred into solution; thus extraction is the first step in biomaterial analysis. High hydrostatic pressure technology was used for ginsenoside extraction from ginseng roots. In the extraction of fresh and red ginseng, high hydrostatic pressure extraction (HHPE) was found to be more effective than heat extraction (HE). RESULTS In fresh ginseng extraction under HHPE, total ginsenosides (1602.2 µg mL⁻¹) and ginsenoside metabolite (132.6 µg mL⁻¹) levels were slightly higher than those under HE (1259.0 and 78.7 µg mL⁻¹), respectively. In red ginseng, similar results indicated total ginsenoside and ginsenoside metabolite amounts according to the extraction methods. Most volatile compounds by HHPE were higher than by HE treatment. HHPE of red ginseng was conducted under four pressures: 0.1 MPa (1 atm), 30, 50, and 80 MPa. Total sugar, uronic acid, and polyphenol amounts increased until 30 MPa of pressure and then showed decreasing tendencies. Total ginsenoside and ginsenoside metabolite contents linearly increased with increasing pressure, and a maximum was reached at 80 MPa for the metabolites. CONCLUSION HHPE used for red ginseng processing contributes to enhanced extraction efficiencies of functional materials such as ginsenosides through cell structure modification.


Food and Chemical Toxicology | 2013

Anti-obesity effects of hot water extract and high hydrostatic pressure extract of garlic in rats fed a high-fat diet.

Hyunjin Joo; Chong Tai Kim; In Hwan Kim; Yangha Kim

The effects of hot water extract of garlic (WEG) and high hydrostatic pressure extract of garlic (HEG) on obesity were investigated in rats fed a high-fat (HF) diet. Supplementation with HEG significantly reduced body weight gain and adipose tissue mass compared to those in the HF group, whereas WEG did not. Serum levels of triglycerides, total cholesterol, and LDL-cholesterol were also decreased in the HEG supplemented group compared to those in the HF group. The level of fecal triglyceride in the HEG group was higher compared to that in the HF group. The mRNA levels of adipogenic genes, such as peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein-1c (SREBP-1c), and fatty acid-binding protein (aP2) were significantly decreased in both the WEG and HEG groups. Additionally, uncoupling protein 2 (UCP2) mRNA were increased clearly in the HEG group compared to that in the HF group. These results suggested that HEG more efficiently reduced body weight gain than WEG, at least partially mediated by increase of the fecal triglyceride and downregulation of adipogenic genes expression together with upregulation of UCP2 gene expression in rats fed a high-fat diet.


Journal of Food Science | 2012

Lipase-Catalyzed Production of Pinolenic Acid Concentrate from Pine Nut Oil Using a Recirculating Packed Bed Reactor

Tingting Zhao; Byung Hee Kim; Seung In Hong; Sung Won Yoon; Chong Tai Kim; Yangha Kim; In Hwan Kim

Pinolenic acid (PLA) concentrate in fatty acid ethyl ester (FAEE) was efficiently produced from pine nut oil via lipase-catalyzed ethanolysis using a recirculating packed bed reactor (RPBR). The effects of reaction temperature, molar ratio, and residence time on the concentration of PLA were explored. Novozym 435 lipase from Candida antarctica showed less selectivity toward PLA esterified at the sn-3 position when temperature was increased from 45 to 55 °C. For the trials of molar ratio between 1: 50 and 1: 100 (pine nut oil to ethanol), there were no significant differences in the yield of PLA. Residence time of substrate in a RPBR affected significantly the PLA content as well as the yield of PLA. Optimal temperature, molar ratio (pine nut oil to ethanol), and residence time for production of PLA concentrate via lipase-catalyzed ethanolysis in a RPBR were 45 °C, 1: 50, and 3 min, respectively. Under these conditions, the maximal PLA content (36.1 mol%) in the concentrate was obtained during the initial 10 min of reaction.


Lipids in Health and Disease | 2012

High hydrostatic pressure extract of garlic increases the HDL cholesterol level via up-regulation of apolipoprotein A-I gene expression in rats fed a high-fat diet

Seohyun Lee; Hyunjin Joo; Chong Tai Kim; In Hwan Kim; Yangha Kim

BackgroundCardiovascular disease (CVD) is the number one cause of mortality worldwide and a low high-density lipoprotein cholesterol (HDL-C) level is an important marker of CVD risk. Garlic (Allium sativum) has been widely used in the clinic for treatment of CVD and regulation of lipid metabolism. This study investigated the effects of a high hydrostatic pressure extract of garlic (HEG) on HDL-C level and regulation of hepatic apolipoprotein A-I (apoA-I) gene expression.MethodsMale Sprague–Dawley rats were divided into two groups and maintained on a high-fat control diet (CON) or high-fat control diet supplemented with high hydrostatic pressure extract of garlic (HEG) for 5 weeks. Changes in the expression of genes related to HDL-C metabolism were analyzed in liver, together with biometric and blood parameters.ResultsIn the HEG group, the plasma triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased in comparison with the CON group (P < 0.05). Dietary HEG also lowered the hepatic TG and total cholesterol (TC) levels compared to the CON group. While the plasma HDL-C level and mRNA level of hepatic apoA-I, which is one of primarily proteins of HDL-C particle, were significantly increased in the HEG group compared to the CON group (P < 0.05). The gene expression of ATP-binding cassette transporter A1 (ABCA1) and lecithin:cholesterol acyltransferase (LCAT), importantly involved in the biogenesis in HDL, were also up-regulated by dietary HEG.ConclusionsThese results suggest that HEG ameliorates plasma lipid profiles and attenuates hepatic lipid accumulation in the high-fat fed rats. Our findings provides that the effects of HEG on the increase of the plasma HDL-C level was at least partially mediated by up-regulation of hepatic genes expression such as apoA-I, ABCA1, and LCAT in rats fed a high-fat diet.


Journal of the Science of Food and Agriculture | 2012

Lipase-catalysed production of triacylglycerols enriched in pinolenic acid at the sn-2 position from pine nut oil

Jong Hun Choi; Byung Hee Kim; Seung In Hong; Chong Tai Kim; Chul Jin Kim; Yangha Kim; In Hwan Kim

BACKGROUND The purpose of this study was to produce triacylglycerols (TAGs) enriched in pinolenic acid (PLA) at the sn-2 position using the principle of acyl migration, from the pine nut oil containing PLA esterified exclusively at the sn-3 position. RESULTS Two types of lipase-catalysed reactions, i.e. redistribution and reesterification of fatty acids, were successively performed using seven commercially available lipases as biocatalysts. Of the lipases tested, Novozym 435 and Lipozyme TL IM were effective biocatalysts for positioning PLA at the sn-2 location. These biocatalysts were selected for further evaluation of the effects of reaction parameters, such as temperature and water content on the migration of PLA residues to the sn-2 position and TAG content. For both lipases, a significant decrease in TAG content was observed after the lipase-catalysed redistribution of fatty acids for both lipases. The reduced TAG content could be enhanced up to approx. 92%, through lipase-catalysed re-esterification of the hydrolysed fatty acids under vacuum. CONCLUSION TAG enriched in PLA at the sn-2 position was synthesised from pine nut oil via lipase-catalysed redistribution and re-esterification of fatty acid residues using Lipozyme TL IM and Novozym 435 as biocatalysts.


International Journal of Nanomedicine | 2014

Anti-obesity efficacy of nanoemulsion oleoresin capsicum in obese rats fed a high-fat diet.

Joo Yeon Kim; Mak Soon Lee; Sunyoon Jung; Hyunjin Joo; Chong Tai Kim; In Hwan Kim; Sangjin Seo; Soojung Oh; Yangha Kim

Purpose This study determined the effects of oleoresin capsicum (OC) and nanoemulsion OC (NOC) on obesity in obese rats fed a high-fat diet. Methods The rats were randomly separated into three groups: a high-fat (HF) diet group, HF + OC diet group, and HF + NOC diet group. All groups were fed the diet and water ad libitum for 14 weeks. Results NOC reduced the body weight and adipose tissue mass, whereas OC did not. OC and NOC reduced mRNA levels of adipogenic genes, including peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1c, and fatty acid-binding protein in white adipose tissue. The mRNA levels of genes related to β-oxidation or thermogenesis including PPAR-α, palmitoyltransferase-1α, and uncoupling protein-2 were increased by the OC and NOC relative to the HF group. Both OC and NOC clearly stimulated AMP-activated protein kinase (AMPK) activity. In particular, PPAR-α, palmitoyltransferase-1α, uncoupling protein-2 expression, and AMPK activity were significantly increased in the NOC group compared to in the OC group. NOC decreased glycerol-3-phosphate dehydrogenase activity whereas OC did not. Conclusion From these results, NOC could be suggested as a potential anti-obesity agent in obese rats fed a HF diet. The effects of the NOC on obesity were associated with changes of multiple gene expression, activation of AMPK, and inhibition of glycerol-3-phosphate dehydrogenase in white adipose tissue.


Journal of Food Science and Nutrition | 2015

High Hydrostatic Pressure Extract of Red Ginseng Attenuates Inflammation in Rats with High-fat Diet Induced Obesity

Sunyoon Jung; Mak Soon Lee; Yoonjin Shin; Chong Tai Kim; In Hwan Kim; Yangha Kim

Chronic low-grade inflammation is associated with obesity. This study investigated effect of high hydrostatic pressure extract of red ginseng (HRG) on inflammation in rats with high-fat (HF) diet induced obesity. Male, Sprague-Dawley rats (80~110 g) were randomly divided into two groups, and fed a 45% HF diet (HF) and a 45% HF diet containing 1.5% HRG (HF+HRG) for 14 weeks. At the end of the experiment, the serum leptin level was reduced by the HRG supplementation. The mRNA expression of genes related to adipogenesis including peroxisome proliferator-activated receptor-gamma and adipocyte protein 2 was down-regulated in the white adipose tissue (WAT). The mRNA levels of major inflammatory cytokines such as tumor necrosis factor-α, monocyte chemoattractant protein 1, and interleukin-6 were remarkably down-regulated by the HRG in WAT. These results suggest that HRG might be beneficial in ameliorating the inflammation-associated health complications by suppressing adipogenic and pro-inflammatory gene expression.

Collaboration


Dive into the Chong Tai Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yangha Kim

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Nam-Soo Kim

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byung Hee Kim

Sookmyung Women's University

View shared research outputs
Top Co-Authors

Avatar

Hyunjin Joo

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge