Chongdee Thammakhet
Prince of Songkla University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chongdee Thammakhet.
Food Chemistry | 2015
Fonthip Makkliang; Proespichaya Kanatharana; Panote Thavarungkul; Chongdee Thammakhet
A novel, simple and low cost magnetic multi-walled carbon nanotubes-poly (vinyl alcohol) cryogel-micro-solid phase extraction (magnetic-MWCNTs-PVA cryogel-μ-SPE) sorbent was synthesized by incorporating magnetic particles and MWCNTs into a PVA cryogel. The magnetic-MWCNTs-PVA cryogel-μ-SPE sorbent developed, with a large surface area and macro-porous structure, provided good sorbent-to-sorbent reproducibility (%RSD<8) and each sorbent could be used up to 30 times (%RSD<6). This sorbent was applied for the extraction of dibutyl phthalate (DBP) and di-2-(ethylhexyl) phthalate (DEHP) in packaged food prior to analysis by gas chromatograph coupled with flame ionisation detector (GC-FID). The concentration of DBP and DEHP in hot-water samples from plastic bags were found in the range 0.04-0.15 μg mL(-1) and 0.03-0.20 μg mL(-1), respectively, but only DEHP was found in clear chicken soup samples in the range 0.02-0.07 μg mL(-1).
Analytica Chimica Acta | 2010
Karel Cizek; Chad Prior; Chongdee Thammakhet; Michal Galik; Kevin L. Linker; Ray Tsui; Avi Cagan; John Wake; Jeffrey T. La Belle; Joseph Wang
This article reports on an integrated explosive-preconcentration/electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. The challenges involved in such system integration are discussed. A hydrogel-coated screen-printed electrode is used for the detection of the thermally desorbed TNT from a preconcentration device using rapid square wave voltammetry. Optimization of the preconcentration system for desorption of TNT and subsequent electrochemical detection was conducted yielding a desorption temperature of 120 degrees C under a flow rate of 500 mL min(-1). Such conditions resulted in a characteristic electrochemical signal for TNT representing the multi-step reduction process. Quantitative measurements produced a linear signal dependence on TNT quantity exposed to the preconcentrator from 0.25 to 10 microg. Finally, the integrated device was successfully demonstrated using a sample of solid TNT located upstream of the preconcentrator.
Analytica Chimica Acta | 2010
Sakchaibordee Sungkaew; Chongdee Thammakhet; Panote Thavarungkul; Proespichaya Kanatharana
A new polyethylene glycol fiber was developed for solid-phase microextraction (SPME) of styrene by electrodepositing porous Zn film on Ag wire substrate followed by coating with polyethylene glycol sol-gel (Ag/Zn/PEG sol-gel fiber). The scanning electron micrographs of fibers surface revealed a highly porous structure. The extraction property of the developed fiber-to-styrene residue from polystyrene packaged food was investigated by headspace solid-phase microextraction (HS-SPME) and analyzed with a gas chromatograph coupled with flame ionization detection (GC-FID). The new Ag/Zn/PEG sol-gel fiber is simple to prepare, low cost, robust, has high thermal stability and long lifetime, up to 359 extractions. Repeatability of one fiber (n=6) was in the range of 4.7-7.5% and fiber-to-fiber reproducibility (n=4) for five concentration values were in the range 3.4-10%. This Ag/Zn/PEG sol-gel fiber was compared to two commercial SPME fibers, 75 microm carboxen/polydimethylsiloxane (CAR/PDMS) and 100 microm polydimethylsiloxane (PDMS). Under their optimum conditions, Ag/Zn/PEG sol-gel fiber showed the highest sensitivity and the lowest detection limit at 0.28+/-0.01 ng mL(-1).
Analytical Chemistry | 2009
Jie Wu; Karin Y. Chumbimuni-Torres; Michal Galik; Chongdee Thammakhet; David A. Haake; Joseph Wang
Here, we report on a highly sensitive potentiometric detection of DNA hybridization. The new assay uses a low-volume solid-contact silver ion-selective electrode (Ag(+)-ISE) to monitor the depletion of silver ions induced by the biocatalytic reaction of the alkaline-phosphatase enzyme tag. The resultant potential change of the Ag(+)-ISE, thus, serves as the hybridization signal. Factors affecting the potentiometric hybridization response have been optimized to offer a detection limit of 50 fM (0.2 amol) DNA target. The new potentiometric assay was applied successfully to the monitoring of the 16S rRNA of E. coli pathogenic bacteria to achieve a low detection limit of 10 CFU in the 4 microL sample. Such potentiometric transduction of biocatalytically induced metallization processes holds great promise for monitoring various bioaffinity assays involving common enzyme tags.
Biosensors and Bioelectronics | 2010
Rodtichoti Wannapob; Proespichaya Kanatharana; Warakorn Limbut; Apon Numnuam; Punnee Asawatreratanakul; Chongdee Thammakhet; Panote Thavarungkul
Boronic acid that can reversibly bind to diols was used to detect bacteria through its affinity binding reaction with diol-groups on bacterial cell walls. 3-aminophenylboronic acid (3-APBA) was immobilized on a gold electrode via a self-assembled monolayer. The change in capacitance of the sensing surface caused by the binding between 3-APBA and bacteria in a flow system was detected by a potentiostatic step method. Under optimal conditions the linear range of 1.5×10(2)-1.5×10(6) CFU ml(-1) and the detection limit of 1.0×10(2) CFU ml(-1) was obtained. The sensing surface can be regenerated and reused up to 58 times. The method was used for the analysis of bacteria in several types of water, i.e., bottled, well, tap, reservoir and wastewater. Compared with the standard plate count method, the results were within one standard deviation of each other. The proposed method can save both time and cost of analysis. The electrode modified with 3-APBA would also be applicable to the detection of other cis-diol-containing analytes. The concept could be extended to other chemoselective ligands, offering less expensive and more robust affinity sensors for a wide range of compounds.
Biosensors and Bioelectronics | 2016
Supannee Sankoh; Chongdee Thammakhet; Apon Numnuam; Warakorn Limbut; Proespichaya Kanatharana; Panote Thavarungkul
A simple and selective colorimetric sensor for sialic acid detection, based on the aggregation of 4-mercaptophenylboronic acid functionalized gold nanoparticles (4-MPBA-AuNPs) was developed. The color of the solution changed from wine-red to blue after binding with sialic acid. The colorimetric sensor provided good analytical performances with a linear dynamic range of 80µM to 2.00mM and a 68±2µM limit of detection without any effect from possible interferences and sample matrix. In addition, the quantitative results were obtained within only 10min. This developed sensor was used to detect sialic acid in blood serum samples and the results were in good agreement with those from the current periodate-resorcinol method (P>0.05) thus indicating that this developed colorimetric sensor can be used as an alternative method for sialic acid detection with a shorter analysis time and a high accuracy.
Journal of Molecular Recognition | 2008
Alexander E. Ivanov; Chongdee Thammakhet; Marina V. Kuzimenkova; Panote Thavarungkul; Proespichaya Kanatharana; Lyubov I. Mikhalovska; Sergey V. Mikhalovsky; Igor Yu. Galaev; Bo Mattiasson
Radical copolymerization of acrylamide (Am) (90 mol%) with N‐acryloyl‐m‐aminophenylboronic acid (NAAPBA) (10 mol%) carried out on the surface of glass slides in aqueous solution and in the absence of chemical cross‐linkers, resulted in the formation of thin semitransparent gels. The phenylboronic acid (PBA) ligand density was ca. 160 µmol/ml gel. The gels exhibited a macroporous structure and displayed optical response to sucrose, lactose, glucose and fructose in 50 mM sodium phosphate buffer, in the pH range from 6.5 to 7.5. The response was fairly reversible and linearly depended on glucose concentration in the wide concentration range from 1 to 60 mM at pH 7.3. The character of response was explained by the balance of two competing equilibrium processes: binding of glucose to phenylboronate anions and binary hydrophobic interactions of neutral PBA groups. The apparent diffusion coefficient of glucose in the gels was ca. 2.5 × 10−7 cm2/s. A freshly prepared gel can be used daily for at least 1 month without changes in sensitivity. Autoclaving (121°C, 1.2 bar, 10 min) allows for the gels sterilization, which is important for their use as glucose sensors in fermentation processes. Copyright
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2013
Sujittra Poorahong; Chongdee Thammakhet; Panote Thavarungkul; Proespichaya Kanatharana
A simple and high extraction efficiency online in-tube microextractor (ITME) was developed for bisphenol A (BPA) detection in water samples. The ITME was fabricated by a stepwise electrodeposition of polyaniline, polyethylene glycol and polydimethylsiloxane composite (CPANI) inside a silico-steel tube. The obtained ITME coupled with UV-Vis detection at 278 nm was investigated. By this method, the extraction and pre-concentration of BPA in water were carried out in a single step. Under optimum conditions, the system provided a linear dynamic range of 0.1 to 100 μM with a limit of detection of 20 nM (S/N ≥3). A single in-tube microextractor had a good stability of more than 60 consecutive injections for 10.0 μM BPA with a relative standard deviation of less than 4%. Moreover, a good tube-to-tube reproducibility and precision were obtained. The system was applied to detect BPA in water samples from six brands of baby bottles and the results showed good agreement with those obtained from the conventional GC-MS method. Acceptable percentage recoveries from the spiked water samples were obtained, ranging from 83–102% for this new method compared with 73–107% for the GC-MS standard method. This new in-tube CPANI microextractor provided an excellent extraction efficiency and a good reproducibility. In addition, it can also be easily applied for the analysis of other polar organic compounds contaminated in water sample.
Talanta | 2016
Ketsarin Chu-mong; Chongdee Thammakhet; Panote Thavarungkul; Proespichaya Kanatharana; Chittanon Buranachai
In this work, the idea of incorporating a non-enzymatic signal amplification with a regular aptasensor was tested. In this proof of principle, the sensor was designed for the detection of mercury (II) ions (Hg(2+)) based on the Förster Resonance Energy Transfer (FRET), and the catalyzed hairpin assembly (CHA) technique that was used as the signal amplification method. This sensor comprised a mercury aptamer-catalyst complex (Apt-C) and two types of hairpin DNA: H1 labeled with fluorescein and H2 labeled with tetramethylrhodamine. In the presence of Hg(2+), two facing thymine bases in the mercury aptamer strand were coordinated with one mercury ion. This caused the release of the catalyst for the catalyzed hairpin assembly (CHA) reaction that turned H1 and H2 hairpins into H1-H2 hybrids. FRET was then used to report the hairpin-duplex transformation. The sensor showed excellent specificity towards Hg(2+) over other possible interfering cations present at even a 100 fold greater concentrations. It had a linear range of 10.0-200.0nM, and a good detection limit of 7.03±0.18nM, which is lower than the regulatory mercury limit for drinking water (10nM or 2ppb). The sensor was used to detect spiked Hg(2+) in nine real surface water samples collected from three different areas. Acceptable recoveries and small standard deviations indicated that the sensor was practically applicable, and the proposed idea to incorporate a CHA amplification in a regular aptasensor was not only feasible but beneficial. The same principles can be applied to develop sensors for various different targets.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2012
Opas Bunkoed; Panote Thavarungkul; Chongdee Thammakhet; Proespichaya Kanatharana
A simple and high collection efficiency sampling method was developed for the monitoring of carbonyl compounds, i.e., formaldehyde, acetaldehyde, benzaldehyde, acetone and butanone. The determination is based on the reaction of these compounds in a sensitive absorbing solution of 2,4–DNPH. After the completion of the reaction the derivatives were analyzed by the HPLC system without any post sample preparation. The operation conditions of the proposed method were optimized to obtain the highest sampling efficiency within a short analysis time. The collection efficiency for all compounds was in the range of 95 ± 3 % to 99 ± 4 % and the relative standard deviations (n = 15) were less than 10 %. This method was validated and applied to monitor carbonyl compounds in air samples from an occupational environment, the adhesive industry. Formaldehyde was found to be the most abundant carbonyl compound (64 ± 8 to 250 ± 20 ppbv), followed by acetaldehyde (ND to 24 ± 6 ppbv), acetone (ND to 21 ± 5 ppbv) and benzaldehyde (ND to 27 ± 7 ppbv). The sampling of air directly into the absorbing solution was compared with the conventional method of using an adsorbent cartridge, and the results were in good agreement (P > 0.05).