Chongjun Zhong
Nantong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chongjun Zhong.
Journal of Cellular and Molecular Medicine | 2015
Qiulian Zhou; Lei Wei; Chongjun Zhong; Siyi Fu; Yihua Bei; Radu-Ionuț Huică; Fei Wang; Junjie Xiao
Telocytes (TCs) are a distinct type of interstitial cells, which are featured with a small cellular body and long and thin elongations called telopodes (Tps). TCs have been widely identified in lots of tissues and organs including heart. Double staining for CD34/PDGFR‐β (Platelet‐derived growth factor receptor β) or CD34/Vimentin is considered to be critical for TC phenotyping. It has recently been proposed that CD34/PDGFR‐α (Platelet‐derived growth factor receptor α) is actually a specific marker for TCs including cardiac TCs although the direct evidence is still lacking. Here, we showed that cardiac TCs were double positive for CD34/PDGFR‐α in primary culture. CD34/PDGFR‐α positive cells (putative cardiac TCs) also existed in mice ventricle and human cardiac valves including mitral valve, tricuspid valve and aortic valve. Over 87% of cells in a TC‐enriched culture of rat cardiac interstitial cells were positive for PDGFR‐α, while CD34/PDGFR‐α double positive cells accounted for 30.25% of the whole cell population. We show that cardiac TCs are double positive for CD34/PDGFR‐α. Better understanding of the immunocytochemical phenotypes of cardiac TCs might help using cardiac TCs as a novel source in cardiac repair.
BioMed Research International | 2017
Shengguang Ding; Haitao Huang; Yiming Xu; Hao Zhu; Chongjun Zhong
MicroRNAs (miRNAs and miRs) are endogenous 19–22 nucleotide, small noncoding RNAs with highly conservative and tissue specific expression. They can negatively modulate target gene expressions through decreasing transcription or posttranscriptional inducing mRNA decay. Increasing evidence suggests that deregulated miRNAs play an important role in the genesis of cardiovascular diseases. Additionally, circulating miRNAs can be biomarkers for cardiovascular diseases. MiR-222 has been reported to play important roles in a variety of physiological and pathological processes in the heart. Here we reviewed the recent studies about the roles of miR-222 in cardiovascular diseases. MiR-222 may be a potential cardiovascular biomarker and a new therapeutic target in cardiovascular diseases.
Journal of Cellular and Molecular Medicine | 2016
Chongjun Zhong; Kun Wang; Ying Liu; Dongchao Lv; Bo Zheng; Qiulian Zhou; Qi Sun; Ping Chen; Shengguang Ding; Yiming Xu; Haitao Huang
Cardiac fibrosis is a fundamental constituent of a variety of cardiac dysfunction, making it a leading cause of death worldwide. However, no effective treatment for cardiac fibrosis is available. Therefore, novel therapeutics for cardiac fibrosis are highly needed. Recently, miR‐19b has been found to be able to protect hydrogen peroxide (H2O2)‐induced apoptosis and improve cell survival in H9C2 cardiomyocytes, while down‐regulation of miR‐19b had opposite effects, indicating that increasing miR‐19b may be a new therapeutic strategy for attenuating cellular apoptosis during myocardial ischaemia–reperfusion injury. However, considering the fact that microRNAs might exert a cell‐specific role, it is highly interesting to determine the role of miR‐19b in cardiac fibroblasts. Here, we found that miR‐19b was able to promote cardiac fibroblast proliferation and migration. However, miR‐19b mimics and inhibitors did not modulate the expression level of collagen I. Pten was identified as a target gene of miR‐19b, which was responsible for the effect of miR‐19b in controlling cardiac fibroblast proliferation and migration. Our data suggest that the role of miR‐19b is cell specific, and systemic miR‐19b targeting in cardiac remodelling might be problematic. Therefore, it is highly needed and also urgent to investigate the role of miR‐19b in cardiac remodelling in vivo.
Frontiers in Physiology | 2018
Huanyu Gu; Zhuyuan Liu; Yongqin Li; Yuan Xie; Jianhua Yao; Yujiao Zhu; Jiahong Xu; Qiying Dai; Chongjun Zhong; Hao Zhu; Shengguang Ding; Lei Zhou
Acute myocardial infarction (AMI) represents a leading cause of morbidity and mortality worldwide. Extracellular vesicles (EVs) are being recognized as a promising therapeutic approach in protecting against MI. Serum is a rich source of EVs, which transports various microRNAs (miRNAs, miRs). EVs from serum have been shown beneficial for protecting against ischemia-reperfusion injury; however, their roles in AMI are unclear. In addition, whether a miRNA might be responsible for the effects of serum EVs on protecting against AMI is undetermined. Here, we demonstrated that serum EVs significantly reduced cardiomyocytes apoptosis in both cellular and mouse models of AMI, and dramatically attenuated the infarct size in mouse hearts after AMI. Inhibition of miR-21 was shown to reduce the protective effects of serum EVs in inhibiting cardiomyocytes apoptosis. miR-21 was decreased in mouse hearts after AMI, while serum EVs increased that. In addition, the programmed cell death 4 (PDCD4) expression was identified as a target gene of miR-21. Therefore, our study showed the protective effects of serum EVs on AMI, and provided a novel strategy for AMI therapy.
Archive | 2018
Shengguang Ding; Yujiao Zhu; Yajun Liang; Haitao Huang; Yiming Xu; Chongjun Zhong
Vascular disease is one of the top five causes of death and affects a variety of other diseases, such as heart, nervous system, and metabolic disorders. Vascular dysfunction is a hallmark of ischemia, cancer, and inflammatory diseases and can accelerate the progression of diseases. Circular RNAs (circRNAs) are a new type of noncoding RNAs with covalent bond ring structure, which have been reported to be abnormally expressed in many human diseases. circRNAs regulate gene expression through the sponging of microRNAs (miRNAs) and can also be used as disease biomarkers. Here we will summarize the functions of circRNAs in vascular diseases, including vascular dysfunction, atherosclerosis, diabetes mellitus-related retinal vascular dysfunction, chronic thromboembolic pulmonary hypertension, carotid atherosclerotic disease, hepatic vascular invasion in hepatocellular carcinoma, aortic aneurysm, coronary artery disease, and type 2 diabetes mellitus.
Archive | 2017
Shengguang Ding; Zhiqing Fan; Che Lin; Qiying Dai; Jinzhe Zhou; Haitao Huang; Yiming Xu; Chongjun Zhong
Despite years of researches, cardiovascular disease (CVD) remains the most common cause of death around the world. Lots of studies showed that by pretreating with short nonfatal ischemia in in situ organ or distant organ, one could develop tolerance to the following fatal ischemia. The process is called ischemic preconditioning (IPC). IPC prepare the heart for damage by producing inflammatory signals, miRNA, neuro system stimulation and exosomes. Among them, exosomes have been gaining increasing interest since it is characterized by its capability to carry information and its specific ligand-receptor system. Here we will discuss IPC induced exosomes and its protective effects during ischemic heart disease.
Archive | 2017
Shengguang Ding; Tianyi Gan; Meiyi Song; Qiying Dai; Haitao Huang; Yiming Xu; Chongjun Zhong
C/EBPB is a crucial transcription factor, participating in a variety of biological processes including cell proliferation, differentiation and development. In the cardiovascular system, C/EBPB-CITED4 signaling is known as a signaling pathway mediating exercise-induced cardiac growth. After its exact role in exercised heart firstly reported in 2010, more and more evidence confirmed that. MicroRNA (e.g. miR-222) and many molecules (e.g. Alpha-lipoic acid) can regulate this pathway and then involve in the cardiac protection effect induced by endurance exercise training. In addition, in cardiac growth during pregnancy, C/EBPB is also a required regulator. This chapter will give an introduction of the C/EBPB-CITED4 signaling and the regulatory network based on this signaling pathway in exercised heart.
International Journal of Clinical and Experimental Medicine | 2015
Yiming Xu; Chongjun Zhong; Shengguang Ding; Haitao Huang; Zhenya Shen
International Journal of Clinical and Experimental Medicine | 2015
Chongjun Zhong; Shengguang Ding; Yiming Xu; Haitao Huang
Archive | 2017
Shengguang Ding; Jingying Zhang; Qiying Dai; Mengfei Zhao; Haitao Huang; Yiming Xu; Chongjun Zhong