Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chongyang Han is active.

Publication


Featured researches published by Chongyang Han.


Annals of Neurology | 2012

Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy

Catharina G. Faber; Janneke G. J. Hoeijmakers; Hye Sook Ahn; Xiaoyang Cheng; Chongyang Han; Jin Sung Choi; Mark Estacion; Giuseppe Lauria; Els K. Vanhoutte; Monique M. Gerrits; Sulayman D. Dib-Hajj; Joost P. H. Drenth; Stephen G. Waxman; Ingemar S. J. Merkies

Small nerve fiber neuropathy (SFN) often occurs without apparent cause, but no systematic genetic studies have been performed in patients with idiopathic SFN (I‐SFN). We sought to identify a genetic basis for I‐SFN by screening patients with biopsy‐confirmed idiopathic SFN for mutations in the SCN9A gene, encoding voltage‐gated sodium channel NaV1.7, which is preferentially expressed in small diameter peripheral axons.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Gain-of-function Nav1.8 mutations in painful neuropathy

Catharina G. Faber; Giuseppe Lauria; Ingemar S. J. Merkies; Xiaoyang Cheng; Chongyang Han; Hye Sook Ahn; Anna Karin Persson; Janneke G. J. Hoeijmakers; Monique M. Gerrits; Tiziana Pierro; Raffaella Lombardi; Dimos Kapetis; Sulayman D. Dib-Hajj; Stephen G. Waxman

Painful peripheral neuropathy often occurs without apparent underlying cause. Gain-of-function variants of sodium channel Nav1.7 have recently been found in ∼30% of cases of idiopathic painful small-fiber neuropathy. Here, we describe mutations in Nav1.8, another sodium channel that is specifically expressed in dorsal root ganglion (DRG) neurons and peripheral nerve axons, in patients with painful neuropathy. Seven Nav1.8 mutations were identified in 9 subjects within a series of 104 patients with painful predominantly small-fiber neuropathy. Three mutations met criteria for potential pathogenicity based on predictive algorithms and were assessed by voltage and current clamp. Functional profiling showed that two of these three Nav1.8 mutations enhance the channel’s response to depolarization and produce hyperexcitability in DRG neurons. These observations suggest that mutations of Nav1.8 contribute to painful peripheral neuropathy.


Pain | 2012

Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system

Shannon D. Shields; Hye-Sook Ahn; Yang Yang; Chongyang Han; Rebecca P. Seal; John N. Wood; Stephen G. Waxman; Sulayman D. Dib-Hajj

Summary Nav1.8 is expressed in 75% of all primary somatosensory afferents, including not only nociceptors but also C‐and A‐fiber low‐threshold mechanoreceptors. ABSTRACT A vast diversity of salient cues is sensed by numerous classes of primary sensory neurons, defined by specific neuropeptides, ion channels, or cytoskeletal proteins. Recent evidence has demonstrated a correlation between the expression of some of these molecular markers and transmission of signals related to distinct sensory modalities (eg, heat, cold, pressure). Voltage‐gated sodium channel Nav1.8 has been reported to be preferentially expressed in small‐diameter unmyelinated sensory afferents specialized for the detection of noxious stimuli (nociceptors), and Nav1.8‐Cre mice have been widely used to investigate gene function in nociceptors. However, the identity of neurons in which Cre‐mediated recombination occurs in these animals has not been resolved, and whether expression of Nav1.8 in these neurons is dynamic during development is not known, rendering interpretation of conditional knockout mouse phenotypes problematic. Here, we used genetics, immunohistochemistry, electrophysiology, and calcium imaging to precisely characterize the expression of Nav1.8 in the peripheral nervous system. We demonstrate that 75% of dorsal root ganglion (DRG) neurons express Nav1.8‐Cre, including >90% of neurons expressing markers of nociceptors and, unexpectedly, a large population (∼40%) of neurons with myelinated A fibers. Furthermore, analysis of DRG neurons’ central and peripheral projections revealed that Nav1.8‐Cre is not restricted to nociceptors but is also expressed by at least 2 types of low‐threshold mechanoreceptors essential for touch sensation, including those with C and Aβ fibers. Our results indicate that Nav1.8 underlies electrical activity of sensory neurons subserving multiple functional modalities, and call for cautious interpretation of the phenotypes of Nav1.8‐Cre‐driven conditional knockout mice.


Brain | 2014

Gain-of-function mutations in sodium channel Na V 1.9 in painful neuropathy

Jianying Huang; Chongyang Han; Mark Estacion; Dymtro Vasylyev; Janneke G. J. Hoeijmakers; Monique M. Gerrits; Lynda Tyrrell; Giuseppe Lauria; Catharina G. Faber; Sulayman D. Dib-Hajj; Ingemar S. J. Merkies; Stephen G. Waxman

Sodium channel Nav1.9 is expressed in peripheral nociceptive neurons, as well as visceral afferents, and has been shown to act as a threshold channel. Painful peripheral neuropathy represents a significant public health challenge and may involve gain-of-function variants in sodium channels that are preferentially expressed in peripheral sensory neurons. Although gain-of-function variants of peripheral sodium channels Nav1.7 and Nav1.8 have recently been found in painful small fibre neuropathy, the aetiology of peripheral neuropathy in many cases remains unknown. We evaluated 459 patients who were referred for possible painful peripheral neuropathy, and confirmed the diagnosis of small fibre neuropathy in a cohort of 393 patients (369 patients with pure small fibre neuropathy, and small fibre neuropathy together with large fibre involvement in an additional 24 patients). From this cohort of 393 patients with peripheral neuropathy, we sequenced SCN11A in 345 patients without mutations in SCN9A and SCN10A, and found eight variants in 12 patients. Functional profiling by electrophysiological recordings showed that these Nav1.9 mutations confer gain-of-function attributes to the channel, depolarize resting membrane potential of dorsal root ganglion neurons, enhance spontaneous firing, and increase evoked firing of these neurons. Our data show, for the first time, missense mutations of Nav1.9 in individuals with painful peripheral neuropathy. These genetic and functional observations identify missense mutations of Nav1.9 as a cause of painful peripheral neuropathy.


Brain | 2009

Early- and late-onset inherited erythromelalgia: genotype-phenotype correlation.

Chongyang Han; Sulayman D. Dib-Hajj; Zhimiao Lin; Yan Li; Emmanuella M. Eastman; Lynda Tyrrell; Xianwei Cao; Yong Yang; Stephen G. Waxman

Inherited erythromelalgia (IEM), an autosomal dominant disorder characterized by severe burning pain in response to mild warmth, has been shown to be caused by gain-of-function mutations of sodium channel Na(v)1.7 which is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons. Almost all physiologically characterized cases of IEM have been associated with onset in early childhood. Here, we report the voltage-clamp and current-clamp analysis of a new Na(v)1.7 mutation, Q10R, in a patient with clinical onset of erythromelalgia in the second decade. We show that the mutation in this patient hyperpolarizes activation by only -5.3 mV, a smaller shift than seen with early-onset erythromelalgia mutations, but similar to that of I136V, another mutation that is linked to delayed-onset IEM. Using current-clamp, we show that the expression of Q10R induces hyperexcitability in DRG neurons, but produces an increase in excitability that is smaller than the change produced by I848T, an early-onset erythromelalgia mutation. Our analysis suggests a genotype-phenotype relationship at three levels (clinical, cellular and molecular/ion channel), with mutations that produce smaller effects on sodium channel activation being associated with a smaller degree of DRG neuron excitability and later onset of clinical signs.


Molecular Pain | 2011

Intra- and interfamily phenotypic diversity in pain syndromes associated with a gain-of-function variant of NaV1.7

Mark Estacion; Chongyang Han; Jin Sung Choi; Janneke G. J. Hoeijmakers; Giuseppe Lauria; Joost P. H. Drenth; Monique M. Gerrits; Sulayman D. Dib-Hajj; Catharina G. Faber; Ingemar S. J. Merkies; Stephen G. Waxman

BackgroundSodium channel NaV1.7 is preferentially expressed within dorsal root ganglia (DRG), trigeminal ganglia and sympathetic ganglion neurons and their fine-diamter axons, where it acts as a threshold channel, amplifying stimuli such as generator potentials in nociceptors. Gain-of-function mutations and variants (single amino acid substitutions) of NaV1.7 have been linked to three pain syndromes: Inherited Erythromelalgia (IEM), Paroxysmal Extreme Pain Disorder (PEPD), and Small Fiber Neuropathy (SFN). IEM is characterized clinically by burning pain and redness that is usually focused on the distal extremities, precipitated by mild warmth and relieved by cooling, and is caused by mutations that hyperpolarize activation, slow deactivation, and enhance the channel ramp response. PEPD is characterized by perirectal, periocular or perimandibular pain, often triggered by defecation or lower body stimulation, and is caused by mutations that severely impair fast-inactivation. SFN presents a clinical picture dominated by neuropathic pain and autonomic symptoms; gain-of-function variants have been reported to be present in approximately 30% of patients with biopsy-confirmed idiopathic SFN, and functional testing has shown altered fast-inactivation, slow-inactivation or resurgent current. In this paper we describe three patients who house the NaV1.7/I228M variant.MethodsWe have used clinical assessment of patients, quantitative sensory testing and skin biopsy to study these patients, including two siblings in one family, in whom genomic screening demonstrated the I228M NaV1.7 variant. Electrophysiology (voltage-clamp and current-clamp) was used to test functional effects of the variant channel.ResultsWe report three different clinical presentations of the I228M NaV1.7 variant: presentation with severe facial pain, presentation with distal (feet, hands) pain, and presentation with scalp discomfort in three patients housing this NaV1.7 variant, two of which are from a single family. We also demonstrate that the NaV1.7/I228M variant impairs slow-inactivation, and produces hyperexcitability in both trigeminal ganglion and DRG neurons.ConclusionOur results demonstrate intra- and interfamily phenotypic diversity in pain syndromes produced by a gain-of-function variant of NaV1.7.


Experimental Neurology | 2009

Mexiletine-responsive erythromelalgia due to a new Nav1.7 mutation showing use-dependent current fall-off

Jin-Sung Choi; Lili Zhang; Sulayman D. Dib-Hajj; Chongyang Han; Lynda Tyrrell; Zhimiao Lin; Xiaoliang Wang; Yong Yang; Stephen G. Waxman

Inherited erythromelalgia (IEM), characterized by episodic burning pain and erythema of the extremities, is produced by gain-of-function mutations in sodium channel Na(v)1.7, which is preferentially expressed in nociceptive and sympathetic neurons. Most patients do not respond to pharmacotherapy, although occasional reports document patients as showing partial relief with lidocaine or mexiletine. A 7-year-old girl, with a two-year history of symmetric burning pain and erythema in her hands and feet, was diagnosed with erythromelalgia. Treatment with mexiletine reduced the number and severity of pain episodes. We report here a new IEM Na(v)1.7 mutation in this patient, and its response to mexiletine. SCN9A exons from the proband were amplified and sequenced. We identified a single nucleotide substitution (T2616G) in exon 15, not present in 200 ethnically-matched control alleles, which substitutes valine 872 by glycine (V872G) within DII/S5. Whole-cell patch-clamp analysis of wild-type and mutant Na(v)1.7 channels in mammalian cells show that V872G shifts activation by -10 mV, slows deactivation, and generates larger ramp currents. We observed a stronger use-dependent fall-off in current following exposure to mexiletine for V872G compared to wild-type channels. These observations suggest that some patients with IEM may show a favorable response to mexiletine due to a use-dependent effect on mutant Na(v)1.7 channels. Continued relief from pain, even after mexiletine was discontinued in this patient, might suggest that early treatment may slow the progression of the disease.


Neurology | 2012

Nav1.7-related small fiber neuropathy: Impaired slow-inactivation and DRG neuron hyperexcitability

Chongyang Han; Janneke G. J. Hoeijmakers; H.-S. Ahn; P. Zhao; P. Shah; Giuseppe Lauria; Monique M. Gerrits; R.H.M. te Morsche; Sulayman D. Dib-Hajj; J.P.H. Drenth; Catharina G. Faber; Ingemar S. J. Merkies; Stephen G. Waxman

Objectives: Although small fiber neuropathy (SFN) often occurs without apparent cause, the molecular etiology of idiopathic SFN (I-SFN) has remained enigmatic. Sodium channel Nav1.7 is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons and their small-diameter peripheral axons. We recently reported the presence of Nav1.7 variants that produce gain-of-function changes in channel properties in 28% of patients with painful I-SFN and demonstrated impaired slow-inactivation in one of these mutations after expression within HEK293 cells. Here we show that the I739V Nav1.7 variant in a patient with biopsy-confirmed I-SFN impairs slow-inactivation within DRG neurons and increases their excitability. Methods: A patient with SFN symptoms including pain, and no identifiable underlying cause, was evaluated by skin biopsy, quantitative sensory testing, nerve conduction studies, screening of genomic DNA for variants in SCN9A, and functional analysis. Results: Voltage-clamp analysis following expression within DRG neurons revealed that the Nav1.7/I739V substitution impairs slow-inactivation, depolarizing the midpoint (V1/2) by 5.6 mV, and increasing the noninactivating component at 10 mV from 16.5% to 22.2%. Expression of I739V channels within DRG neurons rendered these cells hyperexcitable, reducing current threshold and increasing the frequency of firing evoked by graded suprathreshold stimuli. Conclusions: These observations provide support, from a patient with biopsy-confirmed SFN, for the suggestion that functional variants of Nav1.7 that impair slow-inactivation can produce DRG neuron hyperexcitability that contributes to pain in SFN. Nav1.7 channelopathy-associated SFN should be considered in the differential diagnosis of cases of SFN in which no other cause is found.


Brain | 2012

Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy

Chongyang Han; Janneke G. J. Hoeijmakers; Shujun Liu; Monique M. Gerrits; Rene H. M. te Morsche; Giuseppe Lauria; Sulayman D. Dib-Hajj; Joost P. H. Drenth; Catharina G. Faber; Ingemar S. J. Merkies; Stephen G. Waxman

Patients with small fibre neuropathy typically manifest pain in distal extremities and severe autonomic dysfunction. However, occasionally patients present with minimal autonomic symptoms. The basis for this phenotypic difference is not understood. Sodium channel Na(v)1.7, encoded by the SCN9A gene, is preferentially expressed in the peripheral nervous system within sensory dorsal root ganglion and sympathetic ganglion neurons and their small diameter peripheral axons. We recently reported missense substitutions in SCN9A that encode functional Na(v)1.7 variants in 28% of patients with biopsy-confirmed small fibre neuropathy. Two patients with biopsy-confirmed small fibre neuropathy manifested minimal autonomic dysfunction unlike the other six patients in this series, and both of these patients carry the Na(v)1.7/R185H variant, presenting the opportunity to compare variants associated with extreme ends of a spectrum from minimal to severe autonomic dysfunction. Herein, we show by voltage-clamp that R185H variant channels enhance resurgent currents within dorsal root ganglion neurons and show by current-clamp that R185H renders dorsal root ganglion neurons hyperexcitable. We also show that in contrast, R185H variant channels do not produce detectable changes when studied by voltage-clamp within sympathetic neurons of the superior cervical ganglion, and have no effect on the excitability of these cells. As a comparator, we studied the Na(v)1.7 variant I739V, identified in three patients with small fibre neuropathy characterized by severe autonomic dysfunction as well as neuropathic pain, and show that this variant impairs channel slow inactivation within both dorsal root ganglion and superior cervical ganglion neurons, and renders dorsal root ganglion neurons hyperexcitable and superior cervical ganglion neurons hypoexcitable. Thus, we show that R185H, from patients with minimal autonomic dysfunction, does not produce detectable changes in the properties of sympathetic ganglion neurons, while I739V, from patients with severe autonomic dysfunction, has a profound effect on excitability of sympathetic ganglion neurons.


Journal of Neurology, Neurosurgery, and Psychiatry | 2014

The G1662S Na V 1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability

Chongyang Han; Dmytro V. Vasylyev; Lawrence J. Macala; Monique M. Gerrits; Janneke G. J. Hoeijmakers; Kim J. Bekelaar; Sulayman D. Dib-Hajj; Catharina G. Faber; Ingemar S. J. Merkies; Stephen G. Waxman

Objective Painful small fibre neuropathy (SFN) represents a significant public health problem, with no cause apparent in one-half of cases (termed idiopathic, I-SFN). Gain-of-function mutations of sodium channel NaV1.7 have recently been identified in nearly 30% of patients with biopsy-confirmed I-SFN. More recently, gain-of-function mutations of NaV1.8 have been found in patients with I-SFN. These NaV1.8 mutations accelerate recovery from inactivation, enhance the response to slow depolarisations, and enhance activation at the channel level, thereby producing hyperexcitability of small dorsal root ganglion (DRG) neurons, which include nociceptors, at the cellular level. Identification and functional profiling of additional NaV1.8 variants are necessary to determine the spectrum of changes in channel properties that underlie DRG neuron hyperexcitability in these patients. Methods Two patients with painful SFN were evaluated by skin biopsy, quantitative sensory testing, nerve conduction studies, screening of genomic DNA for mutations in SCN9A and SCN10A and electrophysiological functional analysis. Results A novel sodium channel NaV1.8 mutation G1662S was identified in both patients. Voltage-clamp analysis revealed that the NaV1.8/G1662S substitution impairs fast-inactivation, depolarising the midpoint (V1/2) by approximately 7 mV. Expression of G1662S mutant channels within DRG neurons rendered these cells hyperexcitable. Conclusions We report for the first time a mutation of NaV1.8 which impairs inactivation, in patients with painful I-SFN. Together with our earlier results, our observations indicate that an array of NaV1.8 mutations, which affect channel function in multiple ways, can contribute to the pathophysiology of painful peripheral neuropathy.

Collaboration


Dive into the Chongyang Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Lauria

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge