Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Choo Min Lim is active.

Publication


Featured researches published by Choo Min Lim.


Medical & Biological Engineering & Computing | 2006

Heart rate variability: a review

U. Rajendra Acharya; K. Paul Joseph; N. Kannathal; Choo Min Lim; Jasjit S. Suri

Heart rate variability (HRV) is a reliable reflection of the many physiological factors modulating the normal rhythm of the heart. In fact, they provide a powerful means of observing the interplay between the sympathetic and parasympathetic nervous systems. It shows that the structure generating the signal is not only simply linear, but also involves nonlinear contributions. Heart rate (HR) is a nonstationary signal; its variation may contain indicators of current disease, or warnings about impending cardiac diseases. The indicators may be present at all times or may occur at random—during certain intervals of the day. It is strenuous and time consuming to study and pinpoint abnormalities in voluminous data collected over several hours. Hence, HR variation analysis (instantaneous HR against time axis) has become a popular noninvasive tool for assessing the activities of the autonomic nervous system. Computer based analytical tools for in-depth study of data over daylong intervals can be very useful in diagnostics. Therefore, the HRV signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. In this paper, we have discussed the various applications of HRV and different linear, frequency domain, wavelet domain, nonlinear techniques used for the analysis of the HRV.


Journal of Medical Systems | 2010

EEG Signal Analysis: A Survey

D. Puthankattil Subha; Paul K. Joseph; Rajendra Acharya U; Choo Min Lim

The EEG (Electroencephalogram) signal indicates the electrical activity of the brain. They are highly random in nature and may contain useful information about the brain state. However, it is very difficult to get useful information from these signals directly in the time domain just by observing them. They are basically non-linear and nonstationary in nature. Hence, important features can be extracted for the diagnosis of different diseases using advanced signal processing techniques. In this paper the effect of different events on the EEG signal, and different signal processing methods used to extract the hidden information from the signal are discussed in detail. Linear, Frequency domain, time - frequency and non-linear techniques like correlation dimension (CD), largest Lyapunov exponent (LLE), Hurst exponent (H), different entropies, fractal dimension(FD), Higher Order Spectra (HOS), phase space plots and recurrence plots are discussed in detail using a typical normal EEG signal.


Computer Methods and Programs in Biomedicine | 2005

Characterization of EEG-A comparative study

N. Kannathal; U. Rajendra Acharya; Choo Min Lim; P.K. Sadasivan

The Electroencephalogram (EEG) is a representative signal containing information about the condition of the brain. The shape of the wave may contain useful information about the state of the brain. However, the human observer cannot directly monitor these subtle details. Besides, since bio-signals are highly subjective, the symptoms may appear at random in the time scale. Therefore, the EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. Chaotic measures like correlation dimension (CD), largest Lyapunov exponent (LLE), Hurst exponent (H) and entropy are used to characterize the signal. Results indicate that these nonlinear measures are good discriminators of normal and epileptic EEG signals. These measures distinguish epileptic EEG and alcoholic from normal EEG with an accuracy of more than 90%. The dynamical behavior is less random for alcoholic and epileptic compared to normal. This indicates less of information processing in the brain due to the hyper-synchronization of the EEG. Hence, the application of nonlinear time series analysis to EEG signals offers insight into the dynamical nature and variability of the brain signals. As a pre-analysis step, the EEG data is tested for nonlinearity using surrogate data analysis and the results exhibited a significant difference in the correlation dimension measure of the actual data and the surrogate data.


Medical & Biological Engineering & Computing | 2004

Classification of cardiac abnormalities using heart rate signals.

R. Acharya; A. Kumar; P. S. Bhat; Choo Min Lim; S. S. lyengar; N. Kannathal; S. M. Krishnan

The heart rate is a non-stationary signal, and its variation can contain indicators of current disease or warnings about impending cardiac diseases. The indicators can be present at all times or can occur at random, during certain intervals of the day. However, to study and pinpoint abnormalities in large quantities of data collected over several hours is strenuous and time consuming. Hence, heart rate variation measurement (instantaneous heart rate against time) has become a popular, non-invasive tool for assessing the autonomic nervous system. Computerbased analytical tools for the in-depth study and classification of data over day-long intervals can be very useful in diagnostics. The paper deals with the classification of cardiac rhythms using an artificial neural network and fuzzy relationships. The results indicate a high level of efficacy of the tools used, with an accuracy level of 80–85%


Medical Engineering & Physics | 2010

Application of higher order statistics/spectra in biomedical signals—A review

Kuang Chua Chua; Vinod Chandran; U. Rajendra Acharya; Choo Min Lim

For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second-order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.


Computers in Biology and Medicine | 2013

Computer-aided diagnosis of diabetic retinopathy: A review

Muthu Rama Krishnan Mookiah; U. Rajendra Acharya; Chua Kuang Chua; Choo Min Lim; E. Y. K. Ng; Augustinus Laude

Diabetes mellitus may cause alterations in the retinal microvasculature leading to diabetic retinopathy. Unchecked, advanced diabetic retinopathy may lead to blindness. It can be tedious and time consuming to decipher subtle morphological changes in optic disk, microaneurysms, hemorrhage, blood vessels, macula, and exudates through manual inspection of fundus images. A computer aided diagnosis system can significantly reduce the burden on the ophthalmologists and may alleviate the inter and intra observer variability. This review discusses the available methods of various retinal feature extractions and automated analysis.


Knowledge Based Systems | 2012

Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features

Muthu Rama Krishnan Mookiah; U. Rajendra Acharya; Choo Min Lim; Andrea Petznick; Jasjit S. Suri

Eye images provide an insight into important parts of the visual system, and also indicate the health of the entire human body. Glaucoma is one of the most common causes of blindness. It is a disease in which fluid pressure in the eye increases gradually, damaging the optic nerve and causing vision loss. Robust mass screening may help to extend the symptom-free life for the affected patients. The retinal optic nerve fiber layer can be assessed using optical coherence tomography, scanning laser polarimetry (SLP), and Heidelberg Retina Tomography (HRT) scanning methods. These methods are expensive and hence a novel low cost automated glaucoma diagnosis system using digital fundus images is proposed. The paper discusses the system for the automated identification of normal and glaucoma classes using Higher Order Spectra (HOS) and Discrete Wavelet Transform (DWT) features. The extracted features are fed to the Support Vector Machine (SVM) classifier with linear, polynomial order 1, 2, 3 and Radial Basis Function (RBF) to select the best kernel function for automated decision making. In this work, SVM classifier with kernel function of polynomial order 2 was able to identify the glaucoma and normal images automatically with an accuracy of 95%, sensitivity and specificity of 93.33% and 96.67% respectively. Finally, we have proposed a novel integrated index called Glaucoma Risk Index (GRI) which is made up of HOS and DWT features, to diagnose the unknown class using a single feature. We hope that this GRI will aid clinicians to make a faster glaucoma diagnosis during the mass screening of normal/glaucoma images.


Journal of Medical Systems | 2011

Application of Higher Order Spectra to Identify Epileptic EEG

Kuang Chua Chua; Vinod Chandran; U. Rajendra Acharya; Choo Min Lim

Epilepsy is characterized by the spontaneous and seemingly unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic system that detects seizure onsets would allow patients or the people near them to take appropriate precautions, and could provide more insight into this phenomenon. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, we made a comparative study of the performance of Gaussian mixture model (GMM) and Support Vector Machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Results show that the selected HOS based features achieve 93.11% classification accuracy compared to 88.78% with features derived from the power spectrum for a GMM classifier. The SVM classifier achieves an improvement from 86.89% with features based on the power spectrum to 92.56% with features based on the bispectrum.


International Journal of Neural Systems | 2013

Automated diagnosis of epilepsy using CWT, HOS and texture parameters.

U. Rajendra Acharya; Ratna Yanti; Jia Wei Zheng; M. Muthu Rama Krishnan; Jen Hong Tan; Roshan Joy Martis; Choo Min Lim

Epilepsy is a chronic brain disorder which manifests as recurrent seizures. Electroencephalogram (EEG) signals are generally analyzed to study the characteristics of epileptic seizures. In this work, we propose a method for the automated classification of EEG signals into normal, interictal and ictal classes using Continuous Wavelet Transform (CWT), Higher Order Spectra (HOS) and textures. First the CWT plot was obtained for the EEG signals and then the HOS and texture features were extracted from these plots. Then the statistically significant features were fed to four classifiers namely Decision Tree (DT), K-Nearest Neighbor (KNN), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to select the best classifier. We observed that the SVM classifier with Radial Basis Function (RBF) kernel function yielded the best results with an average accuracy of 96%, average sensitivity of 96.9% and average specificity of 97% for 23.6 s duration of EEG data. Our proposed technique can be used as an automatic seizure monitoring software. It can also assist the doctors to cross check the efficacy of their prescribed drugs.


Knowledge Based Systems | 2013

Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach

Muthu Rama Krishnan Mookiah; U. Rajendra Acharya; Roshan Joy Martis; Chua Kuang Chua; Choo Min Lim; E. Y. K. Ng; Augustinus Laude

Human eye is one of the most sophisticated organ, with retina, pupil, iris cornea, lens and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetes retinopathy (DR) and glaucoma may lead to blindness. DR is caused by damage to the small blood vessels of the retina in the posterior part of the eye of the diabetic patient. The main stages of DR are non-proliferate diabetes retinopathy (NPDR) and proliferate diabetes retinopathy (PDR). The retinal fundus photographs are widely used in the diagnosis and treatment of various eye diseases in clinics. It is also one of the main resources used for mass screening of DR. We present an automatic screening system for the detection of normal and DR stages (NPDR and PDR). The proposed systems involves processing of fundus images for extraction of abnormal signs, such as area of hard exudates, area of blood vessels, bifurcation points, texture and entropies. Our protocol uses total of 156 subjects consisting of two stages of DR and normal. In this work, we have fed thirteen statistically significant (p<0.0001) features for Probabilistic Neural Network (PNN), Decision Tree (DT) C4.5, and Support Vector Machine (SVM) to select the best classifier. The best model parameter (@s) for which the PNN classifier performed best was identified using global optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). We demonstrated an average classification accuracy of 96.15%, sensitivity of 96.27% and specificity of 96.08% for @s=0.0104 using threefold cross validation using PNN classifier. The computer-aided diagnosis (CAD) results were validated by comparing with expert ophthalmologists. The proposed automated system can aid clinicians to make a faster DR diagnosis during the mass screening of normal/DR images.

Collaboration


Dive into the Choo Min Lim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinod Chandran

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge