Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Choong Mo Kang is active.

Publication


Featured researches published by Choong Mo Kang.


Biomaterials | 2013

Cholesteryl hyaluronic acid-coated, reduced graphene oxide nanosheets for anti-cancer drug delivery

Wenjun Miao; Gayong Shim; Choong Mo Kang; Soondong Lee; Yearn Seong Choe; Han-Gon Choi; Yu-Kyoung Oh

Here, we report hyaluronyl reduced graphene oxide (rGO) nanosheets as a tumor-targeting delivery system for anticancer agents. Hyaluronyl-modified rGO nanosheets were prepared by synthesizing cholesteryl hyaluronic acid (CHA) and using it to coat rGO nanosheets, yielding CHA-rGO. Compared with rGO, CHA-rGO nanosheets showed increased colloidal stability under physiological conditions and improved in vivo safety, with a survival rate of 100% after intravenous administration of 40 mg/kg in mice. The doxorubicin (Dox) loading capacity of CHA-rGO was 4-fold greater than that of rGO. Uptake of Dox by CD44-overexpressing KB cells was higher for CHA-rGO than for rGO, and was decreased in the presence of hyaluronic acid through competition for CD44 receptor binding. After intravenous administration in tumor-bearing mice, CHA-rGO/Dox showed higher tumor accumulation than rGO/Dox. The in vivo antitumor efficacy of Dox delivered by CHA-rGO was significantly increased compared with free Dox or rGO/Dox. In CHA-rGO/Dox-treated mice, tumor weights were reduced to 14.1% ± 0.1% of those in untreated mice. Our findings indicate that CHA-rGO nanosheets possess greater stability, safety, drug-loading capacity, and CD44-mediated delivery of Dox than rGO nanosheets. These beneficial properties of CHA-rGO improved the distribution of Dox to tumors and facilitated the cellular uptake of Dox by CD44-overexpressing tumor cells, resulting in enhanced anticancer effects.


Molecular Pharmaceutics | 2013

Facile Method To Radiolabel Glycol Chitosan Nanoparticles with 64 Cu via Copper-Free Click Chemistry for MicroPET Imaging

Dong-Eun Lee; Jin Hee Na; Sangmin Lee; Choong Mo Kang; Hun Nyun Kim; Seung Jin Han; Hyunjoon Kim; Yearn Seong Choe; Kyung-Ho Jung; Kyo Chul Lee; Kuiwon Choi; Ick Chan Kwon; Seo Young Jeong; Kyung-Han Lee; Kwangmeyung Kim

An efficient and straightforward method for radiolabeling nanoparticles is urgently needed to understand the in vivo biodistribution of nanoparticles. Herein, we investigated a facile and highly efficient strategy to prepare radiolabeled glycol chitosan nanoparticles with (64)Cu via a strain-promoted azide-alkyne cycloaddition strategy, which is often referred to as click chemistry. First, the azide (N3) group, which allows for the preparation of radiolabeled nanoparticles by copper-free click chemistry, was incorporated to glycol chitosan nanoparticles (CNPs). Second, the strained cyclooctyne derivative, dibenzyl cyclooctyne (DBCO) conjugated with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator, was synthesized for preparing the preradiolabeled alkyne complex with (64)Cu radionuclide. Following incubation with the (64)Cu-radiolabeled DBCO complex (DBCO-PEG4-Lys-DOTA-(64)Cu with high specific activity, 18.5 GBq/μmol), the azide-functionalized CNPs were radiolabeled successfully with (64)Cu, with a high radiolabeling efficiency and a high radiolabeling yield (>98%). Importantly, the radiolabeling of CNPs by copper-free click chemistry was accomplished within 30 min, with great efficiency in aqueous conditions. In addition, we found that the (64)Cu-radiolabeled CNPs ((64)Cu-CNPs) did not show any significant effect on the physicochemical properties, such as size, zeta potential, or spherical morphology. After (64)Cu-CNPs were intravenously administered to tumor-bearing mice, the real-time, in vivo biodistribution and tumor-targeting ability of (64)Cu-CNPs were quantitatively evaluated by microPET images of tumor-bearing mice. These results demonstrate the benefit of copper-free click chemistry as a facile, preradiolabeling approach to conveniently radiolabel nanoparticles for evaluating the real-time in vivo biodistribution of nanoparticles.


Bioconjugate Chemistry | 2014

Tumor-Homing Glycol Chitosan-Based Optical/PET Dual Imaging Nanoprobe for Cancer Diagnosis

Sangmin Lee; Sun-Woong Kang; Ju Hee Ryu; Jin Hee Na; Dong-Eun Lee; Seung Jin Han; Choong Mo Kang; Yearn Seong Choe; Kyo Chul Lee; James F. Leary; Kuiwon Choi; Kyung-Han Lee; Kwangmeyung Kim

Imaging techniques including computed tomography, magnetic resonance imaging, and positron emission tomography (PET) offer many potential benefits to diagnosis and treatment of cancers. Each method has its own strong and weak points. Therefore, multimodal imaging techniques have been highlighted as an alternative method for overcoming the limitations of each respective imaging method. In this study, we fabricated PET/optical activatable imaging probe based on glycol chitosan nanoparticles (CNPs) for multimodal imaging. To prepare the dual PET/optical probes based on CNPs, both (64)Cu radiolabeled DOTA complex and activatable matrix metalloproteinase (MMP)-sensitive peptide were chemically conjugated onto azide-functionalized CNPs via bio-orthogonal click chemistry, which was a reaction between azide group and dibenzyl cyclooctyne. The PET/optical activatable imaging probes were visualized by PET and optical imaging system. Biodistribution of probes and activity of MMP were successfully measured in tumor-bearing mice.


Nuclear Medicine and Biology | 2013

64Cu-Labeled tetraiodothyroacetic acid-conjugated liposomes for PET imaging of tumor angiogenesis

Choong Mo Kang; Hyun-Jung Koo; Sangbin Lee; Kyo Chul Lee; Yu-Kyoung Oh; Yearn Seong Choe

INTRODUCTION We synthesized and evaluated (64)Cu-labeled tetraiodothyroacetic acid (tetrac)-conjugated liposomes for PET imaging of tumor angiogenesis, because tetrac inhibits angiogenesis via integrin αVβ3. METHODS Tetrac-PEG-DSPE and DOTA-PEG-DSPE were synthesized and formulated with other lipids into liposomes. The resulting tetrac/DOTA-liposomes were labeled with (64)Cu at 40 °C for 1 h and purified using a PD-10 column. (64)Cu-DOTA-liposomes were also prepared for comparison. Human aortic endothelial cell (HAEC) binding studies were performed by incubating the liposomes with the cells at 37 °C. MicroPET imaging followed by tissue distribution study was carried out using U87MG tumor-bearing mice injected with tetrac/(64)Cu-DOTA-liposomes or (64)Cu-DOTA-liposomes. RESULTS HAEC binding studies exhibited that tetrac/(64)Cu-DOTA-liposomes were avidly taken up by the cells from 1.02 %ID at 1 h to 11.89 %ID at 24 h, while (64)Cu-DOTA-liposomes had low uptake from 0.47 %ID at 1 h to 1.57 %ID at 24 h. MicroPET imaging of mice injected with tetrac/(64)Cu-DOTA-liposomes showed high radioactivity accumulation in the liver and spleen. ROI analysis of the tumor images revealed 1.93 ± 0.12 %ID/g at 1 h and 2.70 ± 0.36 %ID/g at 22 h. In contrast, tumor ROI analysis of (64)Cu-DOTA-liposomes revealed 0.54 ± 0.08 %ID/g at 1 h and 0.52 ± 0.09 %ID/g at 22 h. Tissue distribution studies confirmed that the tumor uptakes of tetrac/(64)Cu-DOTA-liposomes and (64)Cu-DOTA-liposomes were 1.75 ± 0.03 %ID/g and 0.36 ± 0.01 %ID/g at 22 h, respectively. CONCLUSION These results demonstrate that tetrac/(64)Cu-DOTA-liposomes have significantly enhanced tumor uptake compared to (64)Cu-DOTA-liposomes due to tetrac conjugation. Further studies are warranted to reduce the liver and spleen uptake of tetrac/(64)Cu-DOTA-liposomes.


Nuclear Medicine and Biology | 2014

68Ga-NODAGA-VEGF121 for in vivo imaging of VEGF receptor expression

Choong Mo Kang; Hyun-Jung Koo; Yearn Seong Choe; Joon Young Choi; Kyung-Han Lee; Byung-Tae Kim

PURPOSE Vascular endothelial growth factor (VEGF) is a crucial regulator of angiogenesis. In this study, we labeled VEGF₁₂₁ with (68)Ga using a hydrophilic chelating agent, NODAGA and evaluated the resulting (68)Ga-NODAGA-VEGF₁₂₁ for in vivo imaging of VEGF receptor (VEGFR) expression. METHODS NODAGA-VEGF₁₂₁ was prepared and its binding affinity for VEGFR2 was measured using (125)I-VEGF₁₂₁. (68)Ga-NODAGA-VEGF₁₂₁ was prepared by labeling NODAGA-VEGF₁₂₁ with (68)GaCl3 followed by purification using a PD-10 column. Human aortic endothelial cell (HAEC) binding studies of (68)Ga-NODAGA-VEGF₁₂₁ were performed at 37°C for 4 h. MicroPET imaging followed by biodistribution studies were performed in U87MG tumor-bearing mice injected with (68)Ga-NODAGA-VEGF₁₂₁. Immunofluorescence staining of the tumor tissues was performed to verify VEGFR2 expression. RESULTS Binding affinity of NODAGA-VEGF₁₂₁ for VEGFR2 was found to be comparable to that of VEGF₁₂₁. (68)Ga-NODAGA-VEGF₁₂₁ was prepared in 47.8% yield with specific activity of 3.4 GBq/mg. (68)Ga-NODAGA-VEGF₁₂₁ was avidly taken up by HAECs with a time-dependent increase from 9.88 %ID at 1 h to 20.86 %ID at 4h. MicroPET imaging of mice demonstrated high liver and spleen uptake with clear visualization of tumor at 1h after injection. ROI analysis of tumors revealed 2.53 ± 0.11 %ID/g at 4 h after injection. In the blocking study, tumor uptake was inhibited by 29% at 4 h. Subsequent biodistribution studies demonstrated tumor uptake of 2.38 ± 0.15 %ID/g. Immunofluorescence staining of the tumor tissues displayed high level of VEGFR2 expression. CONCLUSIONS These results demonstrate that (68)Ga-NODAGA-VEGF₁₂₁ led to VEGFR-specific distribution in U87MG tumor-bearing mice. This study also suggests that altered physicochemical properties of VEGF₁₂₁ after radiolabeling may affect biodistribution of the radiolabeled VEGF₁₂₁.


Journal of Drug Targeting | 2014

Characterization of oleanolic acid derivative for colon cancer targeting with positron emission tomography

Sung-Min Kim; Il Ha Jeong; Min Su Yim; Min Kyung Chae; Hak Nam Kim; Dong Kue Kim; Choong Mo Kang; Yearn Seong Choe; Chulhyun Lee; Eun Kyoung Ryu

Abstract Oleanolic acid (OA) is a pentacyclic triterpenoid found in various plant species. Triterpenoid compounds have been shown to inhibit tumor proliferation and to induce apoptosis in cancer cells. We synthesized an OA derivative and evaluated its inhibitory effects on cell proliferation in human colon cancer. Radioisotope-labeled OA was prepared for noninvasive monitoring of tumor progression in vitro and in vivo. The OA derivative decreased cell survival in a concentration-dependent manner and increased apoptosis in HT-29 cells. Furthermore, it induced downregulation of cyclin D1, Cox-2, Bcl-2 and Bcl-xL mRNA expression and upregulation of the mRNA expression of the anti-apoptotic Bax protein in HT29 cells. NF-κB p65 and IκB expression also decreased, whereas expression of the apoptosis marker, the cleaved form of PARP-1, significantly increased in OA derivative-treated HT-29 cells. Radioisotope-labeled OA (68Ga-NOTA-OA) showed significantly high tumor uptake, as assessed by biodistribution and positron emission tomography imaging analyses, at 1 h post-injection in the human colon cancer xenograft model. Our results demonstrate that the OA derivative has promising properties as an anticancer drug and as an imaging tool for tumor targeting.


Nuclear Medicine and Biology | 2012

Evaluation of the angiogenesis inhibitor KR-31831 in SKOV-3 tumor-bearing mice using 64Cu-DOTA-VEGF121 and microPET

Iljung Lee; Kwang Yup Yoon; Choong Mo Kang; Xin Lin; Xiaoyuan Chen; Jung Young Kim; Sung-Min Kim; Eun Kyoung Ryu; Yearn Seong Choe

KR-31831 ((2R,3R,4S)-6-amino-4-[N-(4-chloropheyl)-N-(1H-imidazol-2ylmethyl)amino]-3-hydroxyl-2-methyl-2-dimethoxymethyl-3,4-dihydro-2H-1-benzopyran), an angiogenesis inhibitor, was evaluated in tumor-bearing mice using molecular imaging technology. Pre-treatment microPET images were acquired on SKOV-3 cell-implanted nude mice after injection with (64)Cu-DOTA-VEGF(121). KR-31831 (50 mg/kg) was then injected intraperitoneally into the treatment group (n=3), while injection vehicle was injected into the control (n=4) and blocking (n=3) groups. After injections occurred daily for 28 days, all groups of mice underwent post-treatment microPET imaging after injection with (64)Cu-DOTA-VEGF(121). The post-treatment images showed high tumor uptake in the control group and reduced tumor uptake in both the blocking and treatment groups. ROI analysis of the tumor images revealed 6.25%±1.18% ID/g at 1 h, 6.55%±0.69% ID/g at 2 h, and 4.68%±0.63% ID/g at 16 h in the control group; 3.87%±0.45% ID/g at 1 h, 4.50%±0.44% ID/g at 2 h, and 3.63%±0.25% ID/g at 16 h in the blocking group; and 4.03%±0.74% ID/g at 1 h, 4.37%±0.67% ID/g at 2 h, and 3.83%±0.90% ID/g at 16 h in the treatment group. Biodistribution obtained after the post-treatment microPET imaging also demonstrated high tumor uptake (3.74%±0.27% ID/g) in the control group and reduced uptakes in both the blocking group (2.69%±0.73% ID/g, P<.05) and the treatment group (3.11%±0.25% ID/g, P<.05), which correlated well with microPET imaging data. Immunofluorescence analysis showed higher levels of VEGFR2 and CD31 expressions in tumor tissues of the control and blocking groups than in tumor tissues of the treatment group. These results suggest that the antiangiogenic activity of KR-31831 is mediated through VEGFR2 and microPET serves as a useful molecular imaging tool for evaluation of a newly developed angiogenesis inhibitor, KR-31831.


Biomaterials | 2013

A vascular endothelial growth factor 121 (VEGF121)-based dual PET/optical probe for in vivo imaging of VEGF receptor expression

Choong Mo Kang; Hyun-Jung Koo; Kyo Chul Lee; Yearn Seong Choe; Joon Young Choi; Kyung-Han Lee; Byung-Tae Kim


EJNMMI research | 2015

Hybrid PET/optical imaging of integrin αVβ3 receptor expression using a 64Cu-labeled streptavidin/biotin-based dimeric RGD peptide

Choong Mo Kang; Hyun-Jung Koo; Gwang Il An; Yearn Seong Choe; Joon Young Choi; Kyung-Han Lee; Byung-Tae Kim


Journal of Labelled Compounds and Radiopharmaceuticals | 2011

Synthesis and in vitro evaluation of 2-[11C]methoxyestradiol-3,17β-O,O-bissulfamate for in vivo studies of angiogenesis

Choong Mo Kang; Yearn Seong Choe; Kyung-Ho Jung; Joon Young Choi; Kyung-Han Lee; Byung-Tae Kim

Collaboration


Dive into the Choong Mo Kang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iljung Lee

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jin Hee Na

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kuiwon Choi

Korea Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge