Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Choonkyun Jung is active.

Publication


Featured researches published by Choonkyun Jung.


Plant Physiology | 2007

Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis

Choonkyun Jung; Jun Sung Seo; Sang Won Han; Yeon Jong Koo; Chung Ho Kim; Sang Ik Song; Baek Hie Nahm; Yang Do Choi; Jong-Joo Cheong

AtMYB44 belongs to the R2R3 MYB subgroup 22 transcription factor family in Arabidopsis (Arabidopsis thaliana). Treatment with abscisic acid (ABA) induced AtMYB44 transcript accumulation within 30 min. The gene was also activated under various abiotic stresses, such as dehydration, low temperature, and salinity. In transgenic Arabidopsis carrying an AtMYB44 promoter-driven β-glucuronidase (GUS) construct, strong GUS activity was observed in the vasculature and leaf epidermal guard cells. Transgenic Arabidopsis overexpressing AtMYB44 is more sensitive to ABA and has a more rapid ABA-induced stomatal closure response than wild-type and atmyb44 knockout plants. Transgenic plants exhibited a reduced rate of water loss, as measured by the fresh-weight loss of detached shoots, and remarkably enhanced tolerance to drought and salt stress compared to wild-type plants. Microarray analysis and northern blots revealed that salt-induced activation of the genes that encode a group of serine/threonine protein phosphatases 2C (PP2Cs), such as ABI1, ABI2, AtPP2CA, HAB1, and HAB2, was diminished in transgenic plants overexpressing AtMYB44. By contrast, the atmyb44 knockout mutant line exhibited enhanced salt-induced expression of PP2C-encoding genes and reduced drought/salt stress tolerance compared to wild-type plants. Therefore, enhanced abiotic stress tolerance of transgenic Arabidopsis overexpressing AtMYB44 was conferred by reduced expression of genes encoding PP2Cs, which have been described as negative regulators of ABA signaling.


The Plant Cell | 2012

Genome-Wide Analysis Uncovers Regulation of Long Intergenic Noncoding RNAs in Arabidopsis

Jun Liu; Choonkyun Jung; Jun Xu; Huan Wang; Shulin Deng; Lucia Bernad; Catalina Arenas-Huertero; Nam-Hai Chua

This work identifies 6480 long intergenic noncoding RNAs in Arabidopsis, many of which show organ-specific and stress-responsive expression. The biogenesis of a group of long intergenic noncoding RNAs is coregulated by the RNA processing proteins SERRATE, CBP20, and CBP80. Long intergenic noncoding RNAs (lincRNAs) transcribed from intergenic regions of yeast and animal genomes play important roles in key biological processes. Yet, plant lincRNAs remain poorly characterized and how lincRNA biogenesis is regulated is unclear. Using a reproducibility-based bioinformatics strategy to analyze 200 Arabidopsis thaliana transcriptome data sets, we identified 13,230 intergenic transcripts of which 6480 can be classified as lincRNAs. Expression of 2708 lincRNAs was detected by RNA sequencing experiments. Transcriptome profiling by custom microarrays revealed that the majority of these lincRNAs are expressed at a level between those of mRNAs and precursors of miRNAs. A subset of lincRNA genes shows organ-specific expression, whereas others are responsive to biotic and/or abiotic stresses. Further analysis of transcriptome data in 11 mutants uncovered SERRATE, CAP BINDING PROTEIN20 (CBP20), and CBP80 as regulators of lincRNA expression and biogenesis. RT-PCR experiments confirmed these three proteins are also needed for splicing of a small group of intron-containing lincRNAs.


The Plant Cell | 2014

Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance

Ran Li; Berhane T. Weldegergis; Jie Li; Choonkyun Jung; Jing Qu; Yanwei Sun; Hongmei Qian; ChuanSia Tee; Joop J. A. van Loon; Marcel Dicke; Nam-Hai Chua; Shu-Sheng Liu; Jian Ye

To attract more disease vectors for viral transmission, geminivirus targets the plant transcription factor MYC2 to suppress plant terpene-based resistance against whitefly. A pathogen may cause infected plants to promote the performance of its transmitting vector, which accelerates the spread of the pathogen. This positive effect of a pathogen on its vector via their shared host plant is termed indirect mutualism. For example, terpene biosynthesis is suppressed in begomovirus-infected plants, leading to reduced plant resistance and enhanced performance of the whiteflies (Bemisia tabaci) that transmit these viruses. Although begomovirus-whitefly mutualism has been known, the underlying mechanism is still elusive. Here, we identified βC1 of Tomato yellow leaf curl China virus, a monopartite begomovirus, as the viral genetic factor that suppresses plant terpene biosynthesis. βC1 directly interacts with the basic helix-loop-helix transcription factor MYC2 to compromise the activation of MYC2-regulated terpene synthase genes, thereby reducing whitefly resistance. MYC2 associates with the bipartite begomoviral protein BV1, suggesting that MYC2 is an evolutionarily conserved target of begomoviruses for the suppression of terpene-based resistance and the promotion of vector performance. Our findings describe how this viral pathogen regulates host plant metabolism to establish mutualism with its insect vector.


The Plant Cell | 2011

Rapid and Reversible Light-Mediated Chromatin Modifications of Arabidopsis Phytochrome A Locus

In-Cheol Jang; Pil Joong Chung; Hans Hemmes; Choonkyun Jung; Nam-Hai Chua

This work examines alterations of epigenetic marks in the phytochrome A locus in response to light and finds that rapid changes in histone methylation and acetylation accompany phyA repression by light. Recent genome-wide surveys showed that acetylation of H3K9 and H3K27 is correlated with gene activation during deetiolation of Arabidopsis thaliana seedlings, but less is known regarding changes in the histone status of repressed genes. Phytochrome A (phyA) is the major photoreceptor of deetiolation, and phyA expression is reversibly repressed by light. We found that in adult Arabidopsis plants, phyA activation in darkness was accompanied by a significant enrichment in the phyA transcription and translation start sites of not only H3K9/14ac and H3K27ac but also H3K4me3, and there was also moderate enrichment of H4K5ac, H4K8ac, H4K12ac, and H4K16ac. Conversely, when phyA expression was repressed by light, H3K27me3 was enriched with a corresponding decline in H3K27ac; moreover, demethylation of H3K4me3 and deacetylation of H3K9/14 were also seen. These histone modifications, which were focused around the phyA transcription/translation start sites, were detected within 1 h of deetiolation. Mutant analysis showed that HDA19/HD1 mediated deacetylation of H3K9/14 and uncovered possible histone crosstalk between H3K9/14ac and H3K4me3. Neither small RNA pathways nor the circadian clock affected H3 modification status of the phyA locus, and DNA methylation was unchanged by light. The presence of activating and repressive histone marks suggests a mechanism for the rapid and reversible regulation of phyA by dark and light.


Molecules and Cells | 2010

Non-specific phytohormonal induction of AtMYB44 and suppression of jasmonate-responsive gene activation in Arabidopsis thaliana

Choonkyun Jung; Jae Sung Shim; Jun Sung Seo; Han Yong Lee; Chung Ho Kim; Yang Do Choi; Jong-Joo Cheong

The Arabidopsis thaliana transcription factor gene AtMYB44 was induced within 10 min by treatment with methyl jasmonate (MeJA). Wound-induced expression of the gene was observed in local leaves, but not in distal leaves, illustrating jasmonate-independent induction at wound sites. AtMYB44 expression was not abolished in Arabidopsis mutants insensitive to jasmonate (coi1), ethylene (etr1), or abscisic acid (abi3-1) when treated with the corresponding hormones. Moreover, various growth hormones and sugars also induced rapid AtMYB44 transcript accumulation. Thus, AtMYB44 gene activation appears to not be induced by any specific hormone. MeJA-induced activation of jasmonate-responsive genes such as JR2, VSP, LOXII, and AOS was attenuated in transgenic Arabidopsis plants overexpressing the gene (35S:AtMYB44), but significantly enhanced in atmyb44 knockout mutants. The 35S:MYB44 and atmyb44 plants did not show defectiveness in MeJA-induced primary root growth inhibition, indicating that the differences in jasmonate-responsive gene expression observed was not due to alterations in the jasmonate signaling pathway. 35S:AtMYB44 seedlings exhibited slightly elevated chlorophyll levels and less jasmonate- induced anthocyanin accumulation, demonstrating suppression of jasmonate-mediated responses and enhancement of ABA-mediated responses. These observations support the hypothesis of mutual antagonistic actions between jasmonate- and abscisic acid-mediated signaling pathways.


The Plant Cell | 2015

PLANT U-BOX PROTEIN10 Regulates MYC2 Stability in Arabidopsis

Choonkyun Jung; Pingzhi Zhao; Jun Sung Seo; Nobutaka Mitsuda; Shulin Deng; Nam-Hai Chua

The transcriptional activator MYC2 is targeted by PUB10 for ubiquitin-mediated proteolysis in jasmonic acid responses. MYC2 is an important regulator for jasmonic acid (JA) signaling, but little is known about its posttranslational regulation. Here, we show that the MYC2 C-terminal region interacted with the PLANT U-BOX PROTEIN10 (PUB10) armadillo repeats in vitro. MYC2 was efficiently polyubiquitinated by PUB10 with UBC8 as an E2 enzyme and the conserved C249 in PUB10 was required for activity. The inactive PUB10(C249A) mutant protein retained its ability to heterodimerize with PUB10, thus blocking PUB10 E3 activity as a dominant-negative mutant. Both MYC2 and PUB10 were nucleus localized and coimmunoprecipitation experiments confirmed their interaction in vivo. Although unstable in the wild type, MYC2 stability was enhanced in pub10, suggesting destabilization by PUB10. Moreover, MYC2 half-life was shortened or prolonged by induced expression of PUB10 or the dominant-negative PUB10(C249A) mutant, respectively. Root growth of pub10 seedlings phenocopied 35S:MYC2 seedlings and was hypersensitive to methyl jasmonate, whereas 35S:PUB10 and jin1-9 (myc2) seedlings were hyposensitive. In addition, the root phenotype conferred by MYC2 overexpression in double transgenic plants was reversed or enhanced by induced expression of PUB10 or PUB10(C249A), respectively. Similar results were obtained with three other JA-regulated genes, TAT, JR2, and PDF1.2. Collectively, our results show that MYC2 is targeted by PUB10 for degradation during JA responses.


PLOS Pathogens | 2015

Geminivirus Activates ASYMMETRIC LEAVES 2 to Accelerate Cytoplasmic DCP2-Mediated mRNA Turnover and Weakens RNA Silencing in Arabidopsis.

Jian Ye; Junyi Yang; Yanwei Sun; Pingzhi Zhao; Shiqiang Gao; Choonkyun Jung; Jing Qu; Rongxiang Fang; Nam-Hai Chua

Aberrant viral RNAs produced in infected plant cells serve as templates for the synthesis of dsRNAs. The derived virus-related small interfering RNAs (siRNA) mediate cleavage of viral RNAs by post-transcriptional gene silencing (PTGS), thus blocking virus multiplication. Here, we identified ASYMMETRIC LEAVES2 (AS2) as a new component of plant P body complex which mediates mRNA decapping and degradation. We found that AS2 promotes DCP2 decapping activity, accelerates mRNA turnover rate, inhibits siRNA accumulation and functions as an endogenous suppressor of PTGS. Consistent with these findings, as2 mutant plants are resistant to virus infection whereas AS2 over-expression plants are hypersensitive. The geminivirus nuclear shuttle protein BV1 protein, which shuttles between nuclei and cytoplasm, induces AS2 expression, causes nuclear exit of AS2 to activate DCP2 decapping activity and renders infected plants more sensitive to viruses. These principles of gene induction and shuttling of induced proteins to promote mRNA decapping in the cytosol may be used by viral pathogens to weaken antiviral defenses in host plants.


Plant Biotechnology Reports | 2014

Volatile methyl jasmonate is a transmissible form of jasmonate and its biosynthesis is involved in systemic jasmonate response in wounding

Guepil Jang; Jae Sung Shim; Choonkyun Jung; Jong Tae Song; Han Yong Lee; Pil Joong Chung; Ju-Kon Kim; Yang Do Choi

Volatile organic compounds (VOCs) easily diffuse due to their high hydrophobicity. Because of this physical property, VOCs are able to act as crucial signalling molecules mediating intercellular and interplant communication. Methyl jasmonate (MeJA) is a volatile ester form of jasmonic acid (JA) that is involved in interplant communication in response to biotic and abiotic stresses. Despite its function in interplant communication, the specific role of MeJA in the regulation of intercellular jasmonate responses have been poorly understood. In this study, we demonstrated that MeJA is much more effective than JA in inducing jasmonate response, and the higher efficacy of MeJA relies on its volatile property. To understand the function of MeJA in the regulation of the jasmonate response, we analysed function of JMT gene, Jasmonic acid Methyl Transferase using its knockout mutant (jmt) and overexpressing plants (35S:JMT). Mutant plants that lack JMT expression exhibited reduced jasmonate response, while JMT-overexpressing plants exhibited a higher jasmonate response to JA treatment compared to wild-type plants. In this study, we also showed that JMT is specifically expressed in the phloem, the main vascular system for the transport of phytohormones, and that JMT expression affects systemic jasmonate response in wounding. These results suggest the volatile MeJA is a transmissible form of jasmonate and that its biosynthesis is involved in systemic jasmonate response in wounding.


Journal of Plant Biology | 2013

Arabidopsis histone methyltransferase SET DOMAIN GROUP2 is required for regulation of various hormone responsive genes

Sanghee Kim; Jungeun Lee; Junyi Yang; Choonkyun Jung; Nam-Hai Chua

Histone modifications are known to play important roles in plant development through epigenetic regulation of gene expression. How these modifications regulate downstream targets in response to various environmental cues and developmental stimuli is still largely unknown. Here, we provide evidence that Arabidopsis histone H3K4 methyltransferase SET DOMAIN GROUP2 (SDG2) is required for full activation of hormone responsive genes upon hormone treatment. The pleiotropic phenotypes of sdg2 were closely related to those of auxin deficient mutants and RNA analysis revealed that expression of early hormone responsive genes was significantly reduced in sdg2-5. By ChIP analyses we found that H3K4 tri-methylations on chromatin region of hormone responsive genes such as SAUR27, KIN1 and GASA6 were enriched in WT upon hormone treatments whereas these enrichments were largely abolished in sdg2-5. After hormone treatment, chromatin regions of responsive genes that accumulated H3K4me3 in WT overlapped with those displaying decreased H3K4me3 levels in sdg2-5. Histone H3K4 di-methylation levels on tested genes were increased rather than decreased in sdg2-5, suggesting that SDG2 mediates transition of H3K4me2 to H3K4me3. Taken together, we conclude that the SDG2 activity is required to regulate the expression of hormone responsive genes via histone H3K4 tri-methylation.


Journal of Applied Biological Chemistry | 2003

Constitutive Expression of Defense Genes in Transgenic Arabidopsis Overproducing Methyl Jasmonate

Choonkyun Jung; Seoung-Hyun Lyou; Yeon-Jong Koo; Jong-Tae Song; Yang-Do Choi; Jong-Joo Cheong

Collaboration


Dive into the Choonkyun Jung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jong-Joo Cheong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Shulin Deng

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Yang Do Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huan Wang

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Jun Liu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jun Xu

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han Yong Lee

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge