Chris A. Boulton
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chris A. Boulton.
Theoretical Ecology | 2013
Chris A. Boulton; Peter Good; Timothy M. Lenton
We test proposed generic tipping point early warning signals in a complex climate model (HadCM3) which simulates future dieback of the Amazon rainforest. The equation governing tree cover in the model suggests that zero and non-zero stable states of tree cover co-exist, and a transcritical bifurcation is approached as productivity declines. Forest dieback is a non-linear change in the non-zero tree cover state, as productivity declines, which should exhibit critical slowing down. We use an ensemble of versions of HadCM3 to test for the corresponding early warning signals. However, on approaching simulated Amazon dieback, expected early warning signals of critical slowing down are not seen in tree cover, vegetation carbon or net primary productivity. The lack of a convincing trend in autocorrelation appears to be a result of the system being forced rapidly and non-linearly. There is a robust rise in variance with time, but this can be explained by increases in inter-annual temperature and precipitation variability that force the forest. This failure of generic early warning indicators led us to seek more system-specific, observable indicators of changing forest stability in the model. The sensitivity of net ecosystem productivity to temperature anomalies (a negative correlation) generally increases as dieback approaches, which is attributable to a non-linear sensitivity of ecosystem respiration to temperature. As a result, the sensitivity of atmospheric CO2 anomalies to temperature anomalies (a positive correlation) increases as dieback approaches. This stability indicator has the benefit of being readily observable in the real world.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Chris A. Boulton; Timothy M. Lenton
Significance Sea surface temperature (SST) variations in the North Pacific have triggered past abrupt changes in fisheries and other ecosystems. We have discovered that over the last century, fluctuations of North Pacific SSTs have become less frequent and longer-lived. This “reddening” behavior can also be seen in the dominant pattern of climate variability in the region, known as the Pacific Decadal Oscillation index. This fundamental change in climate variability has important implications for ecosystems in the region. It implies that over the last century, ecosystems have become prone to undergoing larger climate-triggered abrupt shifts. Hence our discovery of changing climate variability could have contributed to the large magnitude of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency––i.e., “redder”––variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900–present), as indicated by a robust increase in autocorrelation. This “reddening” of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent “regime shifts.” Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems.
Nature Communications | 2014
Chris A. Boulton; Lesley C. Allison; Timothy M. Lenton
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
F1000Research | 2014
Stephen J. Beckett; Chris A. Boulton; Hywel T. P. Williams
Nestedness is a statistical measure used to interpret bipartite interaction data in several ecological and evolutionary contexts, e.g. biogeography (species-site relationships) and species interactions (plant-pollinator and host-parasite networks). Multiple methods have been used to evaluate nestedness, which differ in how the metrics for nestedness are determined. Furthermore, several different null models have been used to calculate statistical significance of nestedness scores. The profusion of measures and null models, many of which give conflicting results, is problematic for comparison of nestedness across different studies. We developed the FALCON software package to allow easy and efficient comparison of nestedness scores and statistical significances for a given input network, using a selection of the more popular measures and null models from the current literature. FALCON currently includes six measures and five null models for nestedness in binary networks, and two measures and four null models for nestedness in weighted networks. The FALCON software is designed to be efficient and easy to use. FALCON code is offered in three languages (R, MATLAB, Octave) and is designed to be modular and extensible, enabling users to easily expand its functionality by adding further measures and null models. FALCON provides a robust methodology for comparing the strength and significance of nestedness in a given bipartite network using multiple measures and null models. It includes an “adaptive ensemble” method to reduce undersampling of the null distribution when calculating statistical significance. It can work with binary or weighted input networks. FALCON is a response to the proliferation of different nestedness measures and associated null models in the literature. It allows easy and efficient calculation of nestedness scores and statistical significances using different methods, enabling comparison of results from different studies and thereby supporting theoretical study of the causes and implications of nestedness in different biological contexts.
Climate Dynamics | 2014
James M. Murphy; Ben B. B. Booth; Chris A. Boulton; Robin T. Clark; Glen R. Harris; Jason Lowe; David M. H. Sexton
We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.
PLOS ONE | 2018
Rudy Arthur; Chris A. Boulton; Humphrey Shotton; Hywel T. P. Williams
“Social sensing” is a form of crowd-sourcing that involves systematic analysis of digital communications to detect real-world events. Here we consider the use of social sensing for observing natural hazards. In particular, we present a case study that uses data from a popular social media platform (Twitter) to detect and locate flood events in the UK. In order to improve data quality we apply a number of filters (timezone, simple text filters and a naive Bayes ‘relevance’ filter) to the data. We then use place names in the user profile and message text to infer the location of the tweets. These two steps remove most of the irrelevant tweets and yield orders of magnitude more located tweets than we have by relying on geo-tagged data. We demonstrate that high resolution social sensing of floods is feasible and we can produce high-quality historical and real-time maps of floods using Twitter.
Computers in Education | 2018
Chris A. Boulton; Carmel Kent; Hywel T. P. Williams
Abstract In this study, we analyse the relationship between engagement in a virtual learning environment (VLE) and module grades at a ‘bricks-and-mortar’ university in the United Kingdom. We measure VLE activity for students enrolled in 38 different credit-bearing modules, each of which are compulsory components of six degree programmes. Overall we find that high VLE activity is associated with high grades, but low activity does not necessarily imply low grades. Analysis of individual modules shows a wide range of relationships between the two quantities. Grouping module-level relationships by programme suggests that science-based subjects have a higher dependency on VLE activity. Considering learning design (LD), we find that VLE usage is more important in modules that adopt an instruction-based learning style. We also test the predictive power of VLE usage in determining grades, again finding variation between degree programmes and potential for predicting a students final grade weeks in advance of assessment. Our findings suggest that student engagement with learning at a bricks-and-mortar university is in general hard to determine by VLE usage alone, due to the predominance of other “offline” learning activities, but that VLE usage can nonetheless help to predict performance for some disciplines.
Earth System Dynamics Discussions | 2012
Ben B. B. Booth; D. Bernie; Doug McNeall; Ed Hawkins; John Caesar; Chris A. Boulton; Pierre Friedlingstein; David M. H. Sexton
Climate of The Past | 2015
Zoë Thomas; Frank Kwasniok; Chris A. Boulton; Peter M. Cox; Richard T. Jones; Timothy M. Lenton; Csm Turney
Global Change Biology | 2017
Chris A. Boulton; Ben B. B. Booth; Peter Good