Chris A. E. M. Spronk
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chris A. E. M. Spronk.
Proteins | 2005
Aart J. Nederveen; Jurgen F. Doreleijers; Wim F. Vranken; Zachary Miller; Chris A. E. M. Spronk; Sander B. Nabuurs; Peter Güntert; Miron Livny; John L. Markley; Michael Nilges; Eldon L. Ulrich; Robert Kaptein; Alexandre M. J. J. Bonvin
State‐of‐the‐art methods based on CNS and CYANA were used to recalculate the nuclear magnetic resonance (NMR) solution structures of 500+ proteins for which coordinates and NMR restraints are available from the Protein Data Bank. Curated restraints were obtained from the BioMagResBank FRED database. Although the original NMR structures were determined by various methods, they all were recalculated by CNS and CYANA and refined subsequently by restrained molecular dynamics (CNS) in a hydrated environment. We present an extensive analysis of the results, in terms of various quality indicators generated by PROCHECK and WHAT_CHECK. On average, the quality indicators for packing and Ramachandran appearance moved one standard deviation closer to the mean of the reference database. The structural quality of the recalculated structures is discussed in relation to various parameters, including number of restraints per residue, NOE completeness and positional root mean square deviation (RMSD). Correlations between pairs of these quality indicators were generally low; for example, there is a weak correlation between the number of restraints per residue and the Ramachandran appearance according to WHAT_CHECK (r = 0.31). The set of recalculated coordinates constitutes a unified database of protein structures in which potential user‐ and software‐dependent biases have been kept as small as possible. The database can be used by the structural biology community for further development of calculation protocols, validation tools, structure‐based statistical approaches and modeling. The RECOORD database of recalculated structures is publicly available from http://www.ebi.ac.uk/msd/recoord. Proteins 2005.
PLOS Computational Biology | 2005
Sander B. Nabuurs; Chris A. E. M. Spronk; Geerten W. Vuister; Gert Vriend
One of the major goals of structural genomics projects is to determine the three-dimensional structure of representative members of as many different fold families as possible. Comparative modeling is expected to fill the remaining gaps by providing structural models of homologs of the experimentally determined proteins. However, for such an approach to be successful it is essential that the quality of the experimentally determined structures is adequate. In an attempt to build a homology model for the protein dynein light chain 2A (DLC2A) we found two potential templates, both experimentally determined nuclear magnetic resonance (NMR) structures originating from structural genomics efforts. Despite their high sequence identity (96%), the folds of the two structures are markedly different. This urged us to perform in-depth analyses of both structure ensembles and the deposited experimental data, the results of which clearly identify one of the two models as largely incorrect. Next, we analyzed the quality of a large set of recent NMR-derived structure ensembles originating from both structural genomics projects and individual structure determination groups. Unfortunately, a visual inspection of structures exhibiting lower quality scores than DLC2A reveals that the seriously flawed DLC2A structure is not an isolated incident. Overall, our results illustrate that the quality of NMR structures cannot be reliably evaluated using only traditional experimental input data and overall quality indicators as a reference and clearly demonstrate the urgent need for a tight integration of more sophisticated structure validation tools in NMR structure determination projects. In contrast to common methodologies where structures are typically evaluated as a whole, such tools should preferentially operate on a per-residue basis.
Journal of Biomolecular NMR | 2003
Chris A. E. M. Spronk; Sander B. Nabuurs; Alexandre M. J. J. Bonvin; Elmar Krieger; Geerten W. Vuister; Gert Vriend
Biomolecular structures provide the basis for many studies in research areas such as structure-based drug design and homology modeling. In order to use molecular coordinates it is important that they are reliable in terms of accurate description of the experimental data and in terms of the overall and local geometry. Besides these primary quality criteria an indication is needed for the uncertainty in the atomic coordinates that may arise from the dynamic behavior of the considered molecules as well as from experimental- and computational procedures.In contrast to the crystallographic B-factor, a good measure for the uncertainty in NMR-derived atomic coordinates is still not available. It has become clear in recent years that the widely used atomic Root Mean Square Deviation (RMSD), which is a measure for the precision of the data, overestimates the accuracy of NMR structure ensembles and therefore is a problematic measure for the uncertainty in the atomic coordinates.In this study we report a method that yields a more realistic estimate of the uncertainty in the atomic coordinates by maximizing the RMSD of an ensemble of structures, while maintaining the accordance with the experimentally derived data. The results indicate that the RMSD of most NMR structure ensembles can be significantly increased compromising neither geometric quality nor NMR data. This maximized RMSD therefore seems a better estimate of the true uncertainty in the atomic coordinates.
Journal of Biomolecular NMR | 1996
Frans A. A. Mulder; Chris A. E. M. Spronk; Monique Slijper; Robert Kaptein; Rolf Boelens
SummaryWe present here HSQC experiments with improved sensitivity for signals in the presence of exchange broadening. During periods of coherence transfer through scalar coupling the experiments employ CPMG-derived pulse trains to reduce loss of dephasing of spin coherence due to chemical exchange. 15N−1H gradient CPMG-HSQC and SE-CPMG-HSQC experiments have been developed and applied to complexes of lac repressor headpiece with operator DNA. Improved sensitivity is demonstrated for many protein backbone and side-chain resonances in the complex, markedly for signals of protons located at the protein-DNA interface. In addition, a significant increase in intensity is observed for arginine guanidino groups undergoing conformational exchange.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Julien Maillard; Chris A. E. M. Spronk; Grant Buchanan; Verity Lyall; David J. Richardson; Tracy Palmer; Geerten W. Vuister; Frank Sargent
The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Escherichia coli, many Tat substrates bind redox-active cofactors in the cytoplasm before transport. Coordination of cofactor insertion with protein export involves a “Tat proofreading” process in which chaperones bind twin-arginine signal peptides, thus preventing premature export. The initial Tat signal-binding proteins described belonged to the TorD family, which are required for assembly of N- and S-oxide reductases. Here, we report that E. coli NapD is a Tat signal peptide-binding chaperone involved in biosynthesis of the Tat-dependent nitrate reductase NapA. NapD binds tightly and specifically to the NapA twin-arginine signal peptide and suppresses signal peptide translocation activity such that transport via the Tat pathway is retarded. High-resolution, heteronuclear, multidimensional NMR spectroscopy reveals the 3D solution structure of NapD. The chaperone adopts a ferredoxin-type fold, which is completely distinct from the TorD family. Thus, NapD represents a new family of twin-arginine signal-peptide-binding proteins.
FEBS Letters | 2005
Martijn A. Huynen; Chris A. E. M. Spronk; Toni Gabaldón; Berend Snel
Genomes, functional genomics data and 3D structure reflect different aspects of protein function. Here, we combine these data to predict that BolA, a widely distributed protein family with unknown function, is a reductase that interacts with a glutaredoxin. Comparisons at the 3D structure level as well as at the sequence profile level indicate homology between BolA and OsmC, an enzyme that reduces organic peroxides. Complementary to this, comparative analyses of genomes and genomics data provide strong evidence of an interaction between BolA and the mono‐thiol glutaredoxin family. The interaction between BolA and a mono‐thiol glutaredoxin is of particular interest because BolA does not, in contrast to its homolog OsmC, have evolutionarily conserved cysteines to provide it with reducing equivalents. We propose that BolA uses the mono‐thiol glutaredoxin as the source for these.
Molecular Microbiology | 2012
Sabine Grahl; Julien Maillard; Chris A. E. M. Spronk; Geerten W. Vuister; Frank Sargent
The twin‐arginine translocation (Tat) pathway is a protein targeting system present in many prokaryotes. The physiological role of the Tat pathway is the transmembrane translocation of fully‐folded proteins, which are targeted by N‐terminal signal peptides bearing conserved SRRxFLK ‘twin‐arginine’ amino acid motifs. In Escherichia coli the majority of Tat targeted proteins bind redox cofactors and it is important that only mature, cofactor‐loaded precursors are presented for export. Cellular processes have been unearthed that sequence these events, for example the signal peptide of the periplasmic nitrate reductase (NapA) is bound by a cytoplasmic chaperone (NapD) that is thought to regulate assembly and export of the enzyme. In this work, genetic, biophysical and structural approaches were taken to dissect the interaction between NapD and the NapA signal peptide. A NapD binding epitope was identified towards the N‐terminus of the signal peptide, which overlapped significantly with the twin‐arginine targeting motif. NMR spectroscopy revealed that the signal peptide adopted a α‐helical conformation when bound by NapD, and substitution of single residues within the NapA signal peptide was sufficient to disrupt the interaction. This work provides an increased level of understanding of signal peptide function on the bacterial Tat pathway.
Biochemical Journal | 2015
Zebin Hong; Michał Nowakowski; Chris A. E. M. Spronk; Steen V. Petersen; Peter A. Andreasen; Wiktor Kozminski; Frans A. A. Mulder; Jan K. Jensen
A decade ago, motif at N-terminus with eight-cysteines (MANEC) was defined as a new protein domain family. This domain is found exclusively at the N-terminus of >400 multi-domain type-1 transmembrane proteins from animals. Despite the large number of MANEC-containing proteins, only one has been characterized at the protein level: hepatocyte growth factor activator inhibitor-1 (HAI-1). HAI-1 is an essential protein, as knockout mice die in utero due to placental defects. HAI-1 is an inhibitor of matriptase, hepsin and hepatocyte growth factor (HGF) activator, all serine proteases with important roles in epithelial development, cell growth and homoeostasis. Dysregulation of these proteases has been causatively implicated in pathological conditions such as skin diseases and cancer. Detailed functional understanding of HAI-1 and other MANEC-containing proteins is hampered by the lack of structural information on MANEC. Although many MANEC sequences exist, sequence-based database searches fail to predict structural homology. In the present paper, we present the NMR solution structure of the MANEC domain from HAI-1, the first three-dimensional (3D) structure from the MANEC domain family. Unexpectedly, MANEC is a new subclass of the PAN/apple domain family, with its own unifying features, such as two additional disulfide bonds, two extended loop regions and additional α-helical elements. As shown for other PAN/apple domain-containing proteins, we propose a similar active role of the MANEC domain in intramolecular and intermolecular interactions. The structure provides a tool for the further elucidation of HAI-1 function as well as a reference for the study of other MANEC-containing proteins.
Journal of Molecular Graphics & Modelling | 2006
Elmar Krieger; Jens Erik Nielsen; Chris A. E. M. Spronk; Gert Vriend
FEBS Journal | 1996
Henno W. van den Hooven; Chris A. E. M. Spronk; Mart Van De Kamp; Ruud N.H. Konings; Cornelis W. Hilbers; Frank J. M. Van De Ven