Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris A. Hamilton is active.

Publication


Featured researches published by Chris A. Hamilton.


PeerJ | 2016

Spider phylogenomics: untangling the Spider Tree of Life

Nicole L. Garrison; Juanita Rodriguez; Ingi Agnarsson; Jonathan A. Coddington; Charles E. Griswold; Chris A. Hamilton; Marshal Hedin; Kevin M. Kocot; Joel Ledford; Jason E. Bond

Spiders (Order Araneae) are massively abundant generalist arthropod predators that are found in nearly every ecosystem on the planet and have persisted for over 380 million years. Spiders have long served as evolutionary models for studying complex mating and web spinning behaviors, key innovation and adaptive radiation hypotheses, and have been inspiration for important theories like sexual selection by female choice. Unfortunately, past major attempts to reconstruct spider phylogeny typically employing the “usual suspect” genes have been unable to produce a well-supported phylogenetic framework for the entire order. To further resolve spider evolutionary relationships we have assembled a transcriptome-based data set comprising 70 ingroup spider taxa. Using maximum likelihood and shortcut coalescence-based approaches, we analyze eight data sets, the largest of which contains 3,398 gene regions and 696,652 amino acid sites forming the largest phylogenomic analysis of spider relationships produced to date. Contrary to long held beliefs that the orb web is the crowning achievement of spider evolution, ancestral state reconstructions of web type support a phylogenetically ancient origin of the orb web, and diversification analyses show that the mostly ground-dwelling, web-less RTA clade diversified faster than orb weavers. Consistent with molecular dating estimates we report herein, this may reflect a major increase in biomass of non-flying insects during the Cretaceous Terrestrial Revolution 125–90 million years ago favoring diversification of spiders that feed on cursorial rather than flying prey. Our results also have major implications for our understanding of spider systematics. Phylogenomic analyses corroborate several well-accepted high level groupings: Opisthothele, Mygalomorphae, Atypoidina, Avicularoidea, Theraphosoidina, Araneomorphae, Entelegynae, Araneoidea, the RTA clade, Dionycha and the Lycosoidea. Alternatively, our results challenge the monophyly of Eresoidea, Orbiculariae, and Deinopoidea. The composition of the major paleocribellate and neocribellate clades, the basal divisions of Araneomorphae, appear to be falsified. Traditional Haplogynae is in need of revision, as our findings appear to support the newly conceived concept of Synspermiata. The sister pairing of filistatids with hypochilids implies that some peculiar features of each family may in fact be synapomorphic for the pair. Leptonetids now are seen as a possible sister group to the Entelegynae, illustrating possible intermediates in the evolution of the more complex entelegyne genitalic condition, spinning organs and respiratory organs.


PLOS ONE | 2012

A Reconsideration of the Classification of the Spider Infraorder Mygalomorphae (Arachnida: Araneae) Based on Three Nuclear Genes and Morphology

Jason E. Bond; Brent E. Hendrixson; Chris A. Hamilton; Marshal Hedin

Background The infraorder Mygalomorphae (i.e., trapdoor spiders, tarantulas, funnel web spiders, etc.) is one of three main lineages of spiders. Comprising 15 families, 325 genera, and over 2,600 species, the group is a diverse assemblage that has retained a number of features considered primitive for spiders. Despite an evolutionary history dating back to the lower Triassic, the group has received comparatively little attention with respect to its phylogeny and higher classification. The few phylogenies published all share the common thread that a stable classification scheme for the group remains unresolved. Methods and Findings We report here a reevaluation of mygalomorph phylogeny using the rRNA genes 18S and 28S, the nuclear protein-coding gene EF-1γ, and a morphological character matrix. Taxon sampling includes members of all 15 families representing 58 genera. The following results are supported in our phylogenetic analyses of the data: (1) the Atypoidea (i.e., antrodiaetids, atypids, and mecicobothriids) is a monophyletic group sister to all other mygalomorphs; and (2) the families Mecicobothriidae, Hexathelidae, Cyrtaucheniidae, Nemesiidae, Ctenizidae, and Dipluridae are not monophyletic. The Microstigmatidae is likely to be subsumed into Nemesiidae. Nearly half of all mygalomorph families require reevaluation of generic composition and placement. The polyphyletic family Cyrtaucheniidae is most problematic, representing no fewer than four unrelated lineages. Conclusions Based on these analyses we propose the following nomenclatural changes: (1) the establishment of the family Euctenizidae (NEW RANK); (2) establishment of the subfamily Apomastinae within the Euctenizidae; and (3) the transfer of the cyrtaucheniid genus Kiama to Nemesiidae. Additional changes include relimitation of Domiothelina and Theraphosoidea, and the establishment of the Euctenizoidina clade (Idiopidae + Euctenizidae). In addition to these changes, we propose a “road map” for future sampling across the infraorder with the aim of solving many remaining questions that hinder mygalomorph systematics.


PLOS ONE | 2011

Species Delimitation and Phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic Diversity in North American Tarantulas

Chris A. Hamilton; Daniel R. Formanowicz; Jason E. Bond

Background The primary objective of this study is to reconstruct the phylogeny of the hentzi species group and sister species in the North American tarantula genus, Aphonopelma, using a set of mitochondrial DNA markers that include the animal “barcoding gene”. An mtDNA genealogy is used to consider questions regarding species boundary delimitation and to evaluate timing of divergence to infer historical biogeographic events that played a role in shaping the present-day diversity and distribution. We aimed to identify potential refugial locations, directionality of range expansion, and test whether A. hentzi post-glacial expansion fit a predicted time frame. Methods and Findings A Bayesian phylogenetic approach was used to analyze a 2051 base pair (bp) mtDNA data matrix comprising aligned fragments of the gene regions CO1 (1165 bp) and ND1-16S (886 bp). Multiple species delimitation techniques (DNA tree-based methods, a “barcode gap” using percent of pairwise sequence divergence (uncorrected p-distances), and the GMYC method) consistently recognized a number of divergent and genealogically exclusive groups. Conclusions The use of numerous species delimitation methods, in concert, provide an effective approach to dissecting species boundaries in this spider group; as well they seem to provide strong evidence for a number of nominal, previously undiscovered, and cryptic species. Our data also indicate that Pleistocene habitat fragmentation and subsequent range expansion events may have shaped contemporary phylogeographic patterns of Aphonopelma diversity in the southwestern United States, particularly for the A. hentzi species group. These findings indicate that future species delimitation approaches need to be analyzed in context of a number of factors, such as the sampling distribution, loci used, biogeographic history, breadth of morphological variation, ecological factors, and behavioral data, to make truly integrative decisions about what constitutes an evolutionary lineage recognized as a “species”.


BMC Evolutionary Biology | 2016

Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life.

Chris A. Hamilton; Alan R. Lemmon; Emily Moriarty Lemmon; Jason E. Bond

BackgroundDespite considerable effort, progress in spider molecular systematics has lagged behind many other comparable arthropod groups, thereby hindering family-level resolution, classification, and testing of important macroevolutionary hypotheses. Recently, alternative targeted sequence capture techniques have provided molecular systematics a powerful tool for resolving relationships across the Tree of Life. One of these approaches, Anchored Hybrid Enrichment (AHE), is designed to recover hundreds of unique orthologous loci from across the genome, for resolving both shallow and deep-scale evolutionary relationships within non-model systems. Herein we present a modification of the AHE approach that expands its use for application in spiders, with a particular emphasis on the infraorder Mygalomorphae.ResultsOur aim was to design a set of probes that effectively capture loci informative at a diversity of phylogenetic timescales. Following identification of putative arthropod-wide loci, we utilized homologous transcriptome sequences from 17 species across all spiders to identify exon boundaries. Conserved regions with variable flanking regions were then sought across the tick genome, three published araneomorph spider genomes, and raw genomic reads of two mygalomorph taxa. Following development of the 585 target loci in the Spider Probe Kit, we applied AHE across three taxonomic depths to evaluate performance: deep-level spider family relationships (33 taxa, 327 loci); family and generic relationships within the mygalomorph family Euctenizidae (25 taxa, 403 loci); and species relationships in the North American tarantula genus Aphonopelma (83 taxa, 581 loci). At the deepest level, all three major spider lineages (the Mesothelae, Mygalomorphae, and Araneomorphae) were supported with high bootstrap support. Strong support was also found throughout the Euctenizidae, including generic relationships within the family and species relationships within the genus Aptostichus. As in the Euctenizidae, virtually identical topologies were inferred with high support throughout Aphonopelma.ConclusionsThe Spider Probe Kit, the first implementation of AHE methodology in Class Arachnida, holds great promise for gathering the types and quantities of molecular data needed to accelerate an understanding of the spider Tree of Life by providing a mechanism whereby different researchers can confidently and effectively use the same loci for independent projects, yet allowing synthesis of data across independent research groups.


ZooKeys | 2016

Taxonomic revision of the tarantula genus Aphonopelma Pocock, 1901 (Araneae, Mygalomorphae, Theraphosidae) within the United States

Chris A. Hamilton; Brent E. Hendrixson; Jason E. Bond

Abstract This systematic study documents the taxonomy, diversity, and distribution of the tarantula spider genus Aphonopelma Pocock, 1901 within the United States. By employing phylogenomic, morphological, and geospatial data, we evaluated all 55 nominal species in the United States to examine the evolutionary history of Aphonopelma and the group’s taxonomy by implementing an integrative approach to species delimitation. Based on our analyses, we now recognize only 29 distinct species in the United States. We propose 33 new synonymies (Aphonopelma apacheum, Aphonopelma minchi, Aphonopelma rothi, Aphonopelma schmidti, Aphonopelma stahnkei = Aphonopelma chalcodes; Aphonopelma arnoldi = Aphonopelma armada; Aphonopelma behlei, Aphonopelma vogelae = Aphonopelma marxi; Aphonopelma breenei = Aphonopelma anax; Aphonopelma chambersi, Aphonopelma clarum, Aphonopelma cryptethum, Aphonopelma sandersoni, Aphonopelma sullivani = Aphonopelma eutylenum; Aphonopelma clarki, Aphonopelma coloradanum, Aphonopelma echinum, Aphonopelma gurleyi, Aphonopelma harlingenum, Aphonopelma odelli, Aphonopelma waconum, Aphonopelma wichitanum = Aphonopelma hentzi; Aphonopelma heterops = Aphonopelma moderatum; Aphonopelma jungi, Aphonopelma punzoi = Aphonopelma vorhiesi; Aphonopelma brunnius, Aphonopelma chamberlini, Aphonopelma iviei, Aphonopelma lithodomum, Aphonopelma smithi, Aphonopelma zionis = Aphonopelma iodius; Aphonopelma phanum, Aphonopelma reversum = Aphonopelma steindachneri), 14 new species (Aphonopelma atomicum sp. n., Aphonopelma catalina sp. n., Aphonopelma chiricahua sp. n., Aphonopelma icenoglei sp. n., Aphonopelma johnnycashi sp. n., Aphonopelma madera sp. n., Aphonopelma mareki sp. n., Aphonopelma moellendorfi sp. n., Aphonopelma parvum sp. n., Aphonopelma peloncillo sp. n., Aphonopelma prenticei sp. n., Aphonopelma saguaro sp. n., Aphonopelma superstitionense sp. n., and Aphonopelma xwalxwal sp. n.), and seven nomina dubia (Aphonopelma baergi, Aphonopelma cratium, Aphonopelma hollyi, Aphonopelma mordax, Aphonopelma radinum, Aphonopelma rusticum, Aphonopelma texense). Our proposed species tree based on Anchored Enrichment data delimits five major lineages: a monotypic group confined to California, a western group, an eastern group, a group primarily distributed in high-elevation areas, and a group that comprises several miniaturized species. Multiple species are distributed throughout two biodiversity hotspots in the United States (i.e., California Floristic Province and Madrean Pine-Oak Woodlands). Keys are provided for identification of both males and females. By conducting the most comprehensive sampling of a single theraphosid genus to date, this research significantly broadens the scope of prior molecular and morphological investigations, finally bringing a modern understanding of species delimitation in this dynamic and charismatic group of spiders.


PeerJ | 2016

Preserving and vouchering butterflies and moths for large-scale museum-based molecular research

Soowon Cho; Samantha W. Epstein; Kim T. Mitter; Chris A. Hamilton; David Plotkin; Charles Mitter; Akito Y. Kawahara

Butterflies and moths (Lepidoptera) comprise significant portions of the world’s natural history collections, but a standardized tissue preservation protocol for molecular research is largely lacking. Lepidoptera have traditionally been spread on mounting boards to display wing patterns and colors, which are often important for species identification. Many molecular phylogenetic studies have used legs from pinned specimens as the primary source for DNA in order to preserve a morphological voucher, but the amount of available tissue is often limited. Preserving an entire specimen in a cryogenic freezer is ideal for DNA preservation, but without an easily accessible voucher it can make specimen identification, verification, and morphological work difficult. Here we present a procedure that creates accessible and easily visualized “wing vouchers” of individual Lepidoptera specimens, and preserves the remainder of the insect in a cryogenic freezer for molecular research. Wings are preserved in protective holders so that both dorsal and ventral patterns and colors can be easily viewed without further damage. Our wing vouchering system has been implemented at the University of Maryland (AToL Lep Collection) and the University of Florida (Florida Museum of Natural History, McGuire Center of Lepidoptera and Biodiversity), which are among two of the largest Lepidoptera molecular collections in the world.


Systematics and Biodiversity | 2018

Re-evaluating conservation priorities of New World tarantulas (Araneae: Theraphosidae) in a molecular framework indicates non-monophyly of the genera, Aphonopelma and Brachypelma

Steven P. Turner; Stuart J. Longhorn; Chris A. Hamilton; Ray Gabriel; Fernando Pérez-Miles; Alfried P. Vogler

We present a mtDNA gene tree of tarantula spiders (Araneae: Mygalomorphae: Theraphosidae) based on the mitochondrial 16S-tRNA (leu)-ND1 gene region as a promising initial molecular hypothesis to clarify the taxonomy of the largest subfamily, Theraphosinae. Many species of this New World subfamily are traded widely as exotic pets, yet few scientific studies on them exist, and the robustness of many supposed taxonomic groupings is debatable. Yet the validity of taxon names and knowledge of their distinctiveness is vital for trade regulation, most notably for the Neotropical genus Brachypelma Simon 1891, which is listed under CITES (Appendix II, see online supplemental material, which is available from the articles Taylor & Francis Online page at https://doi.org/10.1080/14772000.2017.1346719). The use of molecular markers for tarantula taxonomy has been limited until recently, with most previous studies relying on morphological methods. Our findings, from newly collected molecular data, have several nomenclatural implications, suggesting a need for a rigorous overhaul of Theraphosinae classification at multiple hierarchical levels. Here, we take steps toward a revised classification, favouring division of Theraphosinae into three tribes: the Theraphosini trib. nov., the Hapalopini trib. nov., and the Grammostolini trib. nov. We also make conservation recommendations for two non-monophyletic genera. Firstly, we recover Aphonopelma Pocock 1901 as polyphyletic, finding that the large radiation into the USA and Mexico is taxonomically distinct from at least three other lineages distributed throughout Central America, one of which includes the type species of the genus. Secondly, and importantly for conservation, we find diphyly in the CITES listed genus Brachypelma Simon 1891, where our data strongly favour a division into two distinct smaller genera. We consider only the lineage with endemics in the Pacific coastal zone of Mexico to be of conservation concern. Finally, we also make suggestions on the future direction of revisionary research for the Theraphosidae as a whole. http://zoobank.org/urn:lsid:zoobank.org:pub:B37F7795-3F92-4334-A0C7-65C8026EE1FB


ZooKeys | 2017

A genome-wide phylogeny of jumping spiders (Araneae, Salticidae), using anchored hybrid enrichment

Wayne P. Maddison; Samuel C. Evans; Chris A. Hamilton; Jason E. Bond; Alan R. Lemmon; Emily Moriarty Lemmon

Abstract We present the first genome-wide molecular phylogeny of jumping spiders (Araneae: Salticidae), inferred from Anchored Hybrid Enrichment (AHE) sequence data. From 12 outgroups plus 34 salticid taxa representing all but one subfamily and most major groups recognized in previous work, we obtained 447 loci totalling 96,946 aligned nucleotide sites. Our analyses using concatenated likelihood, parsimony, and coalescent methods (ASTRAL and SVDQuartets) strongly confirm most previous results, resolving as monophyletic the Spartaeinae, Salticinae (with the hisponines sister), Salticoida, Amycoida, Saltafresia, and Simonida. The agoriines, previously difficult to place beyond subfamily, are finally placed confidently within the saltafresians as relatives of the chrysillines and hasariines. Relationships among the baviines, astioids, marpissoids, and saltafresians remain uncertain, though our analyses tentatively conclude the first three form a clade together. Deep relationships, among the seven subfamilies, appear to be largely resolved, with spartaeines, lyssomanines, and asemoneines forming a clade. In most analyses, Onomastus (representing the onomastines) is strongly supported as sister to the hisponines plus salticines. Overall, the much-improved resolution of many deep relationships despite a relatively sparse taxon sample suggests AHE is a promising technique for salticid phylogenetics.


ZooKeys | 2012

Phylogenetic reconsideration of Myrmekiaphila systematics with a description of the new trapdoor spider species Myrmekiaphila tigris (Araneae, Mygalomorphae, Cyrtaucheniidae, Euctenizinae) from Auburn, Alabama

Jason E. Bond; Chris A. Hamilton; Nicole L. Garrison; Charles H. Ray

Abstract The trapdoor spider genus Myrmekiaphila currently comprises 11 nominal species. A recent molecular phylogenetic evaluation of the group identified a number of problems with respect to how species and species groups were delineated by Bond and Platnick in their 2007 taxonomic revision of the genus. We report herein the discovery of a new species, Myrmekiaphila tigris sp. n. The phylogenetic position of the species is evaluated using a molecular phylogenetic approach based on a set of mtDNA markers. Our preferred phylogenetic hypothesis supports the recognition of a new species and further highlights the need to more carefully investigate species boundaries within the genus. These results further indicate that palpal bulb morphology is rapidly evolving and has likely been a contributing factor in rendering a number of species paraphyletic with respect to the molecular data.


Systematic Entomology | 2018

Museum specimens provide phylogenomic data to resolve relationships of sack-bearer moths (Lepidoptera, Mimallonoidea, Mimallonidae): Molecular phylogeny of Mimallonidae

Ryan A. St Laurent; Chris A. Hamilton; Akito Y. Kawahara

Mimallonidae, the sack‐bearer moths, are a family of predominantly Neotropical moths containing nearly 300 described species. Mimallonidae feed on over 40 host plant families and are found in a variety of environments, but phylogenetic relationships of species within the family have never been investigated. We sequenced 515 loci using anchored hybrid enrichment target capture on ethanol‐preserved and dried museum specimens, with dates of collection ranging from 1985 to 2017. We sampled 47 species, representing 32 of the 36 described mimallonid genera. By incorporating 19 dry museum specimens, and recovering an average of over 400 loci for each, we illustrate the utility of natural history collections in anchored hybrid enrichment‐based phylogenomics. Maximum likelihood and multi‐species coalescent analyses provide robust support for the recognition of six higher‐level groups within Mimallonidae, which we designate as subfamilies: Zaphantinae St Laurent & Kawahara subfam.n., Aurorianinae St Laurent & Kawahara subfam.n., Mimalloninae Burmeister, Lacosominae Dyar, Druenticinae St Laurent & Kawahara subfam.n. and Cicinninae Schaus stat.n. Our phylogenetic results also robustly support eight new tribes: Lacosominae: Trogopterini St Laurent & Kawahara tribe n., Lacosomini Dyar stat.n., Alheitini St Laurent & Kawahara tribe n.; Druenticinae: Luramini St Laurent & Kawahara tribe n., Druenticini St Laurent & Kawahara tribe n.; Cicinninae: Bedosiini St Laurent & Kawahara tribe n., Psychocampini St Laurent & Kawahara tribe n., Cicinnini Schaus stat.n. Three new genera are also described based on our phylogenetic results: Herbinalla St Laurent & Kawahara, gen.n., Ulaluma St Laurent & Kawahara, gen.n., Bedosiallo St Laurent & Kawahara, gen.n. Naniteta Franclemont, syn.n. is a synonym of Lacosoma Grote. Six genera are paraphyletic, and in total 19 new combinations are proposed: Macessoga laxa comb.n., Lacosoma elassa comb.n., Thaelia anysia comb.n., Thaelia subrubiginosa comb.n., Herbinalla caudina comb.n., Druentica brosica comb.n., Ulaluma valva comb.n., Cicinnus eminens comb.n., Roelmana pluridiscata comb.n., Roelmana laguerrei comb.n., Psychocampa joanna comb.n., Psychocampa unalca comb.n., Psychocampa hamata comb.n., Psychocampa marona comb.n., Bedosiallo eugenia comb.n., Bedosiallo forbesi comb.n., Bedosiallo moengus comb.n., Bedosiallo styx comb.n. and Bedosiallo sylvia comb.n. This study is the first to implement the LEP1 probe set on a comprehensive taxonomic dataset that includes many museum specimens, and our results demonstrate that museum specimens can be used in anchored hybrid enrichment studies. Importantly, these data produce a robust phylogeny that will serve as a foundation for future studies on mimallonid evolution, such as host plant relationships and biogeography.

Collaboration


Dive into the Chris A. Hamilton's collaboration.

Top Co-Authors

Avatar

Jason E. Bond

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Akito Y. Kawahara

Florida Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole L. Garrison

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Ryan A. St Laurent

Florida Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Alan R. Lemmon

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marshal Hedin

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Jonathan A. Coddington

National Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge