Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Broeckhoven is active.

Publication


Featured researches published by Chris Broeckhoven.


Journal of Animal Ecology | 2015

What doesn't kill you might make you stronger: functional basis for variation in body armour

Chris Broeckhoven; Genevieve Diedericks; P. le Fras N. Mouton

1. Predation has been proposed to be a selective agent in the evolution of morphological antipredator strategies in prey. Among vertebrates, one of the morphological traits that evolved multiple times is body armour, including carapaces, thickened keratinized scales and plates of dermal bone. 2. It has been generally assumed that body armour provides protection against a predatory attack; yet, few explicit tests of the hypothesis exist. Cordylidae, a relatively small family of southern African lizards, show considerable variation in the degree of body armour. Hence, this family provides an opportunity to test the hypothesis that body armour serves as protection against predators. 3. Experiments were conducted to test whether the bite forces of four species of mammalian predators were high enough to penetrate the skins of Karusasaurus polyzonus, Namazonurus peersi, Cordylus cordylus and Cordylus macropholis, as well as those of Ouroborus cataphractus individuals originating from three localities that differed in their predator diversity. Furthermore, histological techniques were used to test whether variation in skin toughness was associated with concomitant changes in the degree of epidermal (i.e. β-keratin) and dermal (i.e. osteoderm) armour. 4. The skin toughness values for four out of five cordylid lizards tested in this study were well below the bite forces of the mammalian predators. In contrast, the thick osteoderms in the dermis of O. cataphractus can withstand bites from several mongoose species. However, the significant variation in body armour that is present between the three populations of O. cataphractus does not seem to be related to predator diversity. 5. It is concluded that body armour can serve as protection against predation in O. cataphractus, but that alternative selection pressures, such as thermoregulation or predation by snakes, presumably underlie variation in defensive morphology in the other cordylid lizards.


Journal of The Mechanical Behavior of Biomedical Materials | 2017

Functional trade-off between strength and thermal capacity of dermal armor: Insights from girdled lizards

Chris Broeckhoven; Anton du Plessis; Cang Hui

The presence of dermal armor is often unambiguously considered the result of an evolutionary predator-prey arms-race. Recent studies focusing predominantly on osteoderms - mineralized elements embedded in the dermis layer of various extant and extinct vertebrates - have instead proposed that dermal armor might exhibit additional functionalities besides protection. Multiple divergent functionalities could impose conflicting demands on a phenotype, yet, functional trade-offs in dermal armor have rarely been investigated. Here, we use high-resolution micro-computed tomography and voxel-based simulations to test for a trade-off between the strength and thermal capacity of osteoderms using two armored cordylid lizards as model organisms. We demonstrate that high vascularization, associated with improved thermal capacity might limit the strength of osteoderms. These results call for a holistic, cautionary future approach to studies investigating dermal armor, especially those aiming to inspire artificial protective materials.


GigaScience | 2017

Laboratory X-ray micro-computed tomography : a user guideline for biological samples

Anton du Plessis; Chris Broeckhoven; Anina Guelpa; Stephan G. le Roux

Abstract Laboratory x-ray micro–computed tomography (micro-CT) is a fast-growing method in scientific research applications that allows for non-destructive imaging of morphological structures. This paper provides an easily operated “how to” guide for new potential users and describes the various steps required for successful planning of research projects that involve micro-CT. Background information on micro-CT is provided, followed by relevant setup, scanning, reconstructing, and visualization methods and considerations. Throughout the guide, a Jacksons chameleon specimen, which was scanned at different settings, is used as an interactive example. The ultimate aim of this paper is make new users familiar with the concepts and applications of micro-CT in an attempt to promote its use in future scientific studies.


Evolution | 2016

Enemy at the gates: Rapid defensive trait diversification in an adaptive radiation of lizards

Chris Broeckhoven; Genevieve Diedericks; Cang Hui; Buyisile G. Makhubo; P. le Fras N. Mouton

Adaptive radiation (AR), the product of rapid diversification of an ancestral species into novel adaptive zones, has become pivotal in our understanding of biodiversity. Although it has widely been accepted that predators may drive the process of AR by creating ecological opportunity (e.g., enemy‐free space), the role of predators as selective agents in defensive trait diversification remains controversial. Using phylogenetic comparative methods, we provide evidence for an “early burst” in the diversification of antipredator phenotypes in Cordylinae, a relatively small AR of morphologically diverse southern African lizards. The evolution of body armor appears to have been initially rapid, but slowed down over time, consistent with the ecological niche‐filling model. We suggest that the observed “early burst” pattern could be attributed to shifts in vulnerability to different types of predators (i.e., aerial versus terrestrial) associated with thermal habitat partitioning. These results provide empirical evidence supporting the hypothesis that predators or the interaction therewith might be key components of ecological opportunity, although the way in which predators influence morphological diversification requires further study.


PLOS ONE | 2015

Some like it hot : camera traps unravel the effects of weather conditions and predator presence on the activity levels of two lizards

Chris Broeckhoven; Pieter le Fras Nortier Mouton

It is generally assumed that favourable weather conditions determine the activity levels of lizards, because of their temperature-dependent behavioural performance. Inactivity, however, might have a selective advantage over activity, as it could increase survival by reducing exposure to predators. Consequently, the effects of weather conditions on the activity patterns of lizards should be strongly influenced by the presence of predators. Using remote camera traps, we test the hypothesis that predator presence and weather conditions interact to modulate daily activity levels in two sedentary cordylid lizards, Karusasaurus polyzonus and Ouroborus cataphractus. While both species are closely related and have a fully overlapping distribution, the former is a fast-moving lightly armoured lizard, whereas the latter is a slow-moving heavily armoured lizard. The significant interspecific difference in antipredator morphology and consequently differential vulnerability to aerial and terrestrial predators, allowed us to unravel the effects of predation risk and weather conditions on activity levels. Our results demonstrate that K. polyzonus is predominantly active during summer, when ambient temperatures are favourable enough to permit activity. In contrast, a peak in activity during spring was observed in O. cataphractus, with individuals being inactive during most of summer. While favourable weather conditions had a strong effect on the activity levels of K. polyzonus, no such relationship was present in O. cataphractus. Contrary to our hypothesis, the presence of terrestrial predators does not seem to affect daily activity levels or alter the influence of weather conditions on activity levels. We conclude that inactivity in O. cataphractus appears to be related to seasonal differences in vulnerability to predators, rather than the presence of predators, and highlight the importance of additional selective pressures, such as food abundance, in determining the species’ activity levels.


Scientific Reports | 2017

Evolutionary morphology of the lizard chemosensory system.

Simon Baeckens; Anthony Herrel; Chris Broeckhoven; Menelia Vasilopoulou-Kampitsi; Katleen Huyghe; Jana Goyens; Raoul Van Damme

Foraging mode plays a pivotal role in traditional reconstructions of squamate evolution. Transitions between modes are said to spark concerted changes in the morphology, physiology, behaviour, and life history of lizards. With respect to their sensory systems, species that adopt a sit-and-wait strategy are thought to rely on visual cues primarily, while actively hunting species would predominantly use chemical information. The morphology of the tongue and the vomeronasal-organs is believed to mirror this dichotomy. Still, support for this idea of concerted evolution of the morphology of the lizard sensory system merely originates from studies comparing only a few, distantly related taxa that differ in many aspects of their biology besides foraging mode. Hence, we compared vomeronasal-lingual morphology among closely related lizard species (Lacertidae). Our findings show considerable interspecific variation indicating that the chemosensory system of lacertids has undergone substantial change over a short evolutionary time. Although our results imply independent evolution of tongue and vomeronasal-organ form, we find evidence for co-variation between sampler and sensor, hinting towards an ‘optimization’ for efficient chemoreception. Furthermore, our findings suggest species’ degree of investment in chemical signalling, and not foraging behaviour, as a leading factor driving the diversity in vomeronasal-lingual morphology among lacertid species.


Journal of Morphology | 2014

Generation gland morphology in cordylid lizards: An evolutionary perspective

P. le Fras N. Mouton; Alexander F. Flemming; Chris Broeckhoven

To elucidate the functional significance of the three distinct types of generation glands that have been identified among cordylid lizards, we mapped gland type to the terminal taxa in the most recent phylogenetic tree for the Cordylidae. We used the phylogenetic programme Mesquite and applied the principle of parsimony to infer character states for the ancestral nodes in the tree. For those species where information on gland type was not available from the literature, we conducted a histological investigation of generation gland morphology, using standard histological techniques. We included two species of the sister family Gerrhosauridae in the analysis to serve as outgroups. In both Gerrhosaurus typicus and G. flavigularis, scales immediately anterior to the femoral pores displayed glandular activity, but differed from generation glands of cordylids in the absence of mature glandular generations. Among the cordylids investigated, we identified a fourth type of generation gland in Pseudocordylus subviridis, P. spinosus, and in the two Hemicordylus species, one where the glands consistently comprise of two mature glandular generations. In H. capensis, both single‐ and two‐layer type glands are present. Our reconstruction of ancestral character states suggests a minimum of six transformations from one gland type to another during the evolutionary history of the family. The reconstruction furthermore suggests that the single‐layer type gland reappeared at least once (in Hemicordylus) in the Cordylinae after having been lost. The reconstruction also unequivocally shows that the pit‐like multiple‐layer type gland evolved directly from the single‐layer type and not from the protruding multiple‐layer type. The two‐layer type gland appears to be an intermediary condition between the multiple‐layer and single‐layer types. The evolutionary transformation of generation gland type appears to be linked to changes in lifestyle and associated changes in degree of territoriality and the need for chemical communication. J. Morphol. 275:456–464, 2014.


Methods in Ecology and Evolution | 2017

Beauty is more than skin deep: a non‐invasive protocol for in vivo anatomical study using micro‐CT

Chris Broeckhoven; Anton du Plessis; Stephan G. le Roux; Pieter le Fras Nortier Mouton; Cang Hui

Micro Computed Tomography (μCT) is a widely used tool in biomedical research, employed to investigate tissues and bone structures of small mammals in vivo. The application of in vivo μCT scanning in non-medical studies greatly lags behind the rapid advancements made in the biomedical field wherein the methodology has evolved to allow for longitudinal studies and eliminate the need to sacrifice the animal. Ecological and evolutionary studies often involve morphological measurements of a large sample of live animals, however, the potential of in vivo μCT imaging as a method for data acquisition has yet to be delineated. Here we describe a protocol for in vivo μCT imaging of the internal anatomy of reptiles and amphibians, commonly used study organisms in ecological and evolutionary research. We consider the skeletal and extra-skeletal (i.e. osteoderms) bones of a lizard as a case study to elucidate the potential of in vivo μCT imaging. Firstly, we explore the effects of various parameter settings on radiation dose, scan time and image quality. Secondly, we develop a protocol to immobilise and restrain study organisms during scanning without need for the administration of anaesthetics and compare the results of the in vivo protocol to images obtained post mortem. To immobilise animals, we replace the use of anaesthetics by cooling, thereby allowing the use of previously unsuitable rotating gantry μCT scanners that are readily available in scientific institutions. The resultant image quality of in vivo μCT scans is similar to that of post-mortem μCT scans, especially in the abdominal region. We discuss the effect of tube voltage, distance to x-ray source and metal filtration on radiation dose, and how these parameters could be altered to reduce the cumulative radiation dose while maintaining optimal image quality. The proposed in vivo μCT protocol offers a new approach to acquire anatomical information for non-biomedical studies. We offer specific suggestions as to how the protocol can be employed to suit a variety of model organisms. This article is protected by copyright. All rights reserved.


Biology Letters | 2017

Has snake fang evolution lost its bite? New insights from a structural mechanics viewpoint

Chris Broeckhoven; Anton du Plessis

Venomous snakes—the pinnacle of snake evolution—are characterized by their possession of venom-conducting fangs ranging from grooved phenotypes characterizing multiple lineages of rear-fanged taxa to tubular phenotypes present in elapids, viperids and atractaspidines. Despite extensive research, controversy still exists on the selective pressures involved in fang phenotype diversification. Here, we test the hypothesis that larger fangs and consequently a shift to an anterior position in the maxilla evolved to compensate for the costs of structural changes, i.e. higher stress upon impact in tubular fangs compared to grooved fangs. Direct voxel-based stress simulations conducted on high-resolution µCT scans, analysed within a phylogenetic framework, showed no differences in stress distribution between the three fang phenotypes, despite differences in (relative) fang length. These findings suggest that additional compensatory mechanisms are responsible for the biomechanical optimization and that fang length might instead be related to differential striking behaviour strategies.


GigaScience | 2018

Snake fangs: 3D morphological and mechanical analysis by microCT, simulation, and physical compression testing

Anton du Plessis; Chris Broeckhoven; Stephan G. le Roux

Abstract This Data Note provides data from an experimental campaign to analyse the detailed internal and external morphology and mechanical properties of venomous snake fangs. The aim of the experimental campaign was to investigate the evolutionary development of 3 fang phenotypes and investigate their mechanical behaviour. The study involved the use of load simulations to compare maximum Von Mises stress values when a load is applied to the tip of the fang. The conclusions of this study have been published elsewhere, but in this data note we extend the analysis, providing morphological comparisons including details such as curvature comparisons, thickness, etc. Physical compression results of individual fangs, though reported in the original paper, were also extended here by calculating the effective elastic modulus of the entire snake fang structure including internal cavities for the first time. This elastic modulus of the entire fang is significantly lower than the locally measured values previously reported from indentation experiments, highlighting the possibility that the elastic modulus is higher on the surface than in the rest of the material. The micro–computed tomography (microCT) data are presented both in image stacks and in the form of STL files, which simplifies the handling of the data and allows its re-use for future morphological studies. These fangs might also serve as bio-inspiration for future hypodermic needles.

Collaboration


Dive into the Chris Broeckhoven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cang Hui

Stellenbosch University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge