Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris C. Nice is active.

Publication


Featured researches published by Chris C. Nice.


Science | 2006

Homoploid Hybrid Speciation in an Extreme Habitat

Zachariah Gompert; James A. Fordyce; Matthew L. Forister; Arthur M. Shapiro; Chris C. Nice

According to theory, homoploid hybrid speciation, which is hybrid speciation without a change in chromosome number, is facilitated by adaptation to a novel or extreme habitat. Using molecular and ecological data, we found that the alpine-adapted butterflies in the genus Lycaeides are the product of hybrid speciation. The alpine populations possess a mosaic genome derived from both L. melissa and L. idas and are differentiated from and younger than their putative parental species. As predicted, adaptive traits may allow for persistence in the environmentally extreme alpine habitat and reproductively isolate these populations from their parental species.


Evolution | 2012

GENOMIC REGIONS WITH A HISTORY OF DIVERGENT SELECTION AFFECT FITNESS OF HYBRIDS BETWEEN TWO BUTTERFLY SPECIES

Zachariah Gompert; Lauren K. Lucas; Chris C. Nice; James A. Fordyce; Matthew L. Forister; C. Alex Buerkle

Speciation is the process by which reproductively isolated lineages arise, and is one of the fundamental means by which the diversity of life increases. Whereas numerous studies have documented an association between ecological divergence and reproductive isolation, relatively little is known about the role of natural selection in genome divergence during the process of speciation. Here, we use genome‐wide DNA sequences and Bayesian models to test the hypothesis that loci under divergent selection between two butterfly species (Lycaeides idas and L. melissa) also affect fitness in an admixed population. Locus‐specific measures of genetic differentiation between L. idas and L. melissa and genomic introgression in hybrids varied across the genome. The most differentiated genetic regions were characterized by elevated L. idas ancestry in the admixed population, which occurs in L. idas‐like habitat, consistent with the hypothesis that local adaptation contributes to speciation. Moreover, locus‐specific measures of genetic differentiation (a metric of divergent selection) were positively associated with extreme genomic introgression (a metric of hybrid fitness). Interestingly, concordance of differentiation and introgression was only partial. We discuss multiple, complementary explanations for this partial concordance.


Molecular Ecology | 2010

Bayesian analysis of molecular variance in pyrosequences quantifies population genetic structure across the genome of Lycaeides butterflies.

Zachariah Gompert; Matthew L. Forister; James A. Fordyce; Chris C. Nice; Robert J. Williamson; C. Alex Buerkle

The distribution of genetic variation within and among populations is commonly used to infer their demographic and evolutionary histories. This endeavour has the potential to benefit substantially from high‐throughput next‐generation sequencing technologies through a rapid increase in the amount of data available and a corresponding increase in the precision of parameter estimation. Here we report the results of a phylogeographic study of the North American butterfly genus Lycaeides using 454 sequence data. This study serves the dual purpose of demonstrating novel molecular and analytical methods for population genetic analyses with 454 sequence data and expanding our knowledge of the phylogeographic history of Lycaeides. We obtained 341 045 sequence reads from 12 populations that we were able to assemble into 15 262 contigs (most of which were variable), representing one of the largest population genetic data sets for a non‐model organism to date. We examined patterns of genetic variation using a hierarchical Bayesian analysis of molecular variance model, which provides precise estimates of genome‐level φST while appropriately modelling uncertainty in locus‐specific φST. We found that approximately 36% of sequence variation was partitioned among populations, suggesting historical or current isolation among the sampled populations. Estimates of pairwise genome‐level φST were largely consistent with a previous phylogeographic model for Lycaeides, suggesting fragmentation into two to three refugia during Pleistocene glacial cycles followed by post‐Pleistocene range expansion and secondary contact leading to introgressive hybridization. This study demonstrates the potential of using genome‐level data to better understand the phylogeographic history of populations.


Journal of Evolutionary Biology | 2002

The significance of wing pattern diversity in the Lycaenidae: mate discrimination by two recently diverged species

James A. Fordyce; Chris C. Nice; Matthew L. Forister; Arthur M. Shapiro

Closely related species of lycaenid butterflies are determinable, in part, by subtle differences in wing pattern. We found that female wing patterns can act as an effective mate‐recognition signal in some populations of two recently diverged species. In field experiments, we observed that males from a Lycaeides idas population and an alpine population of L. melissa preferentially initiate courtship with conspecific females. A morphometric study indicated that at least two wing pattern elements were important for distinguishing the two species: hindwing spots and orange crescent‐shaped pattern elements called aurorae. We deceived male L. idas into initiating courtship with computer generated paper models of heterospecific females when these pattern elements were manipulated, indicating that the wing pattern elements that define the diversity of this group can be effective mate recognition signals.


Molecular Ecology | 2008

Widespread mito-nuclear discordance with evidence for introgressive hybridization and selective sweeps in Lycaeides.

Zachariah Gompert; Matthew L. Forister; James A. Fordyce; Chris C. Nice

We investigated the extent and potential cause(s) of mitochondrial introgression within the polytypic North American Lycaeides species complex (Lepidoptera). By comparing population genetic structure based on mitochondrial DNA (COI and COII) and nuclear DNA (251 polymorphic amplified fragment length polymorphism markers), we detected substantial mito‐nuclear discordance, primarily involving a single mitochondrial haplotype (h01), which is likely due to mitochondrial introgression between differentiated Lycaeides populations and/or species. We detected reduced mitochondrial genetic diversity relative to nuclear genetic diversity in populations where mitochondrial haplotype h01 occurs, suggesting that the spread of this haplotype was facilitated by selection. We found no evidence that haplotype h01 is associated with increased fitness (in terms of survival to eclosion, fresh adult weight, and adult longevity) in a polymorphic Lycaeides melissa population. However, we did find a positive association between mitochondrial haplotype h01 and infection by the endoparasitic bacterium Wolbachia in one out of three lineages tested. Linkage disequilibrium between mitochondrial haplotype h01 and Wolbachia infection status may have resulted in indirect selection favouring the spread of haplotype h01 in at least one lineage of North American Lycaeides. These results illustrate the potential for introgressive hybridization to produce substantial mito‐nuclear discordance and demonstrate that an individuals mitochondrial and nuclear genome may have strikingly different evolutionary histories resulting from non‐neutral processes and intrinsic differences in the inheritance and biology of these genomes.


Molecular Ecology | 2006

Identifying units for conservation using molecular systematics: the cautionary tale of the Karner blue butterfly

Zachariah Gompert; Chris C. Nice; James A. Fordyce; Matthew L. Forister; Arthur M. Shapiro

The federally endangered North American Karner blue butterfly (Lycaeides melissa samuelis) and the closely related Melissa blue butterfly (L. m. melissa) can be distinguished based on life history and morphology. Western populations of L. m. samuelis share mitochondrial haplotypes with L. m. melissa populations, while eastern populations of L. m. samuelis have divergent haplotypes. Here we test two hypotheses concerning the presence of L. m. melissa mitochondrial haplotypes in western L. m. samuelis populations: (i) mitochondrial introgression has occurred from L. m. melissa populations into western L. m. samuelis populations, or (ii) western populations of the nominal L. m. samuelis are more closely related to L. m. melissa than to eastern L. m. samuelis populations, yet are phenotypically similar to the latter. A Bayesian algorithm was used to cluster 190 L. melissa individuals based on 143 informative amplified fragment length polymorphism (AFLP) loci. This method clearly differentiated L. m. samuelis and L. m. melissa. Thus, genomic divergence was greater between western L. m. samuelis populations and L. m. melissa populations than it was between western and eastern populations of L. m. samuelis. This supports the hypothesis that the presence of L. m. melissa mitochondrial haplotypes in western L. m. samuelis populations is the result of mitochondrial introgression. These data provide valuable information for conservation and management plans for the endangered L. m. samuelis, and illustrate the risks of using data from a single locus for diagnosing significant units of biodiversity for conservation.


Molecular Ecology | 2010

Secondary contact between Lycaeides idas and L. melissa in the Rocky Mountains: extensive admixture and a patchy hybrid zone.

Zachariah Gompert; Lauren K. Lucas; James A. Fordyce; Matthew L. Forister; Chris C. Nice

Studies of hybridization have increased our understanding of the nature of species boundaries, the process of speciation, and the effects of hybridization on the evolution of populations and species. In the present study we use genetic and morphological data to determine the outcome and consequences of secondary contact and hybridization between the butterfly species Lycaeides idas and L. melissa in the Rocky Mountains. Admixture proportions estimated from structure and geographical cline analysis indicate L. idas and L. melissa have hybridized extensively in the Rocky Mountains and that reproductive isolation was insufficient to prevent introgression for much of the genome. Geographical patterns of admixture suggest that hybridization between L. idas and L. melissa has led to the formation of a hybrid zone. The hybrid zone is relatively wide, given estimates of dispersal for Lycaeides butterflies, and does not show strong evidence of cline concordance among characters. We believe the structure of the Lycaeides hybrid zone might be best explained by the patchy distribution of Lycaeides, local extinction and colonization of habitat patches, environmental variation and weak overall selection against hybrids. We found no evidence that hybridization in the Rocky Mountains has resulted in the formation of independent hybrid species, in contrast to the outcome of hybridization between L. idas and L. melissa in the Sierra Nevada. Finally, our results suggest that differences in male morphology between L. idas and L. melissa might contribute to isolation, or perhaps even that selection has favoured the spread of L. melissa male genitalia alleles.


Molecular Ecology | 2014

Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants

Zachariah Gompert; Lauren K. Lucas; C. Alex Buerkle; Matthew L. Forister; James A. Fordyce; Chris C. Nice

Detailed information about the geographic distribution of genetic and genomic variation is necessary to better understand the organization and structure of biological diversity. In particular, spatial isolation within species and hybridization between them can blur species boundaries and create evolutionary relationships that are inconsistent with a strictly bifurcating tree model. Here, we analyse genome‐wide DNA sequence and genetic ancestry variation in Lycaeides butterflies to quantify the effects of admixture and spatial isolation on how biological diversity is organized in this group. We document geographically widespread and pervasive historical admixture, with more restricted recent hybridization. This includes evidence supporting previously known and unknown instances of admixture. The genome composition of admixed individuals varies much more among than within populations, and tree‐ and genetic ancestry‐based analyses indicate that multiple distinct admixed lineages or populations exist. We find that most genetic variants in Lycaeides are rare (minor allele frequency <0.5%). Because the spatial and taxonomic distributions of alleles reflect demographic and selective processes since mutation, rare alleles, which are presumably younger than common alleles, were spatially and taxonomically restricted compared with common variants. Thus, we show patterns of genetic variation in this group are multifaceted, and we argue that this complexity challenges simplistic notions concerning the organization of biological diversity into discrete, easily delineated and hierarchically structured entities.


Oecologia | 2006

How caterpillars avoid overheating: behavioral and phenotypic plasticity of pipevine swallowtail larvae

Chris C. Nice; James A. Fordyce

We tested the hypothesis that larvae of the pipevine swallowtail butterfly, Battus philenor, employ behavioral and phenotypic plasticity as thermoregulatory strategies. These larvae are phenotypically varied across their range with predominantly black larvae (southeastern USA and California) and red larvae (western Texas, Arizona) occurring in different regions. Two years of field observations in south Texas indicate that the proportion of red larvae increases with increasing daily temperatures as the growing season progresses. Larvae were also observed to shift their microhabitats by climbing on non-host vegetation and avoided excessive heat in their feeding microhabitat. Larvae of ten half-sib families from populations in south Texas and California, reared under different temperature regimes in common garden experiments, exhibited plasticity in larval phenotype, with larvae from both populations producing the red phenotype at temperatures greater than 30°C and maintaining the black phenotype at cooler temperatures. However, larvae from Texas were more tolerant of higher temperatures, showing no decrease in growth rate in the highest temperature (maximum seasonal temperature) treatment, compared to the California population. In a field experiment, black larvae were found to have higher body temperatures when exposed to sunlight compared to red larvae. These results suggest that microhabitat shifts and the color polyphenism observed in pipevine swallowtail larvae may be the adaptive strategies that enable larvae to avoid critical thermal maximum temperatures.


Journal of Insect Conservation | 2008

Considering evolutionary processes in the use of single-locus genetic data for conservation, with examples from the Lepidoptera

Matthew L. Forister; Chris C. Nice; James A. Fordyce; Zachariah Gompert; Arthur M. Shapiro

The increasing popularity of molecular taxonomy will undoubtedly have a major impact on the practice of conservation biology. The appeal of such approaches is undeniable since they will clearly be an asset in rapid biological assessments of poorly known taxa or unexplored areas, and for discovery of cryptic biodiversity. However, as an approach for diagnosing units for conservation, some caution is warranted. The essential issue is that mitochondrial DNA variation is unlikely to be causally related to, and thus correlated with, ecologically important components of fitness. This is true for DNA barcoding, molecular taxonomy in general, or any technique that relies on variation at a single, presumed neutral locus. Given that natural selection operates on a time scale that is often much more rapid than the rates of mutation and allele frequency changes due to genetic drift, neutral genetic variation at a single locus can be a poor predictor of adaptive variation within or among species. Furthermore, reticulate processes, such as introgressive hybridization, may also constrain the utility of molecular taxonomy to accurately detect significant units for conservation. A survey of published genetic data from the Lepidoptera indicates that these problems may be more prevalent than previously suspected. Molecular approaches must be used with caution for conservation genetics which is best accomplished using large sample sizes over extensive geography in addition to data from multiple loci.

Collaboration


Dive into the Chris C. Nice's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge