Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris D. Vulpe is active.

Publication


Featured researches published by Chris D. Vulpe.


Cellular and Molecular Life Sciences | 2009

Mammalian iron transport

Gregory J. Anderson; Chris D. Vulpe

Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma.


Journal of Trace Elements in Medicine and Biology | 2012

Intestinal iron absorption

Brie K. Fuqua; Chris D. Vulpe; Gregory J. Anderson

Intestinal iron absorption is a critical process for maintaining body iron levels within the optimal physiological range. Iron in the diet is found in a wide variety of forms, but the absorption of non-heme iron is best understood. Most of this iron is moved across the enterocyte brush border membrane by the iron transporter divalent metal-ion transporter 1, a process enhanced by the prior reduction of the iron by duodenal cytochrome B and possibly other reductases. Enterocyte iron is exported to the blood via ferroportin 1 on the basolateral membrane. This transporter acts in partnership with the ferroxidase hephaestin that oxidizes exported ferrous iron to facilitate its binding to plasma transferrin. Iron absorption is controlled by a complex network of systemic and local influences. The liver-derived peptide hepcidin binds to ferroportin, leading to its internalization and a reduction in absorption. Hepcidin expression in turn responds to body iron demands and the BMP-SMAD signaling pathway plays a key role in this process. The levels of iron and oxygen in the enterocyte also exert important influences on iron absorption. Disturbances in the regulation of iron absorption are responsible for both iron loading and iron deficiency disorders in humans.


BMC Genomics | 2009

Linking mechanistic and behavioral responses to sublethal esfenvalerate exposure in the endangered delta smelt; Hypomesus transpacificus (Fam. Osmeridae)

Richard E. Connon; Juergen Geist; Janice Pfeiff; Alexander V. Loguinov; Leandro S. D'Abronzo; Henri Wintz; Chris D. Vulpe; Inge Werner

BackgroundThe delta smelt (Hypomesus transpacificus) is a pelagic fish species listed as endangered under both the USA Federal and Californian State Endangered Species Acts and considered an indicator of ecosystem health in its habitat range, which is limited to the Sacramento-San Joaquin estuary in California, USA. Anthropogenic contaminants are one of multiple stressors affecting this system, and among them, current-use insecticides are of major concern. Interrogative tools are required to successfully monitor effects of contaminants on the delta smelt, and to research potential causes of population decline in this species. We have created a microarray to investigate genome-wide effects of potentially causative stressors, and applied this tool to assess effects of the pyrethroid insecticide esfenvalerate on larval delta smelt. Selected genes were further investigated as molecular biomarkers using quantitative PCR analyses.ResultsExposure to esfenvalerate affected swimming behavior of larval delta smelt at concentrations as low as 0.0625 μg.L-1, and significant differences in expression were measured in genes involved in neuromuscular activity. Alterations in the expression of genes associated with immune responses, along with apoptosis, redox, osmotic stress, detoxification, and growth and development appear to have been invoked by esfenvalerate exposure. Swimming impairment correlated significantly with expression of aspartoacylase (ASPA), an enzyme involved in brain cell function and associated with numerous human diseases. Selected genes were investigated for their use as molecular biomarkers, and strong links were determined between measured downregulation in ASPA and observed behavioral responses in fish exposed to environmentally relevant pyrethroid concentrations.ConclusionsThe results of this study show that microarray technology is a useful approach in screening for, and generation of molecular biomarkers in endangered, non-model organisms, identifying specific genes that can be directly linked with sublethal toxicological endpoints; such as changes in expression levels of neuromuscular genes resulting in measurable swimming impairments. The developed microarrays were successfully applied on larval fish exposed to esfenvalerate, a known contaminant of the Sacramento-San Joaquin estuary, and has permitted the identification of specific biomarkers which could provide insight into the factors contributing to delta smelt population decline.


PLOS ONE | 2014

The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice

Brie K. Fuqua; Yan Lu; Deepak Darshan; David M. Frazer; Sarah J. Wilkins; Natalie Wolkow; Austin G. Bell; JoAnn Hsu; Catherine C. Yu; Huijun Chen; Joshua L. Dunaief; Gregory J. Anderson; Chris D. Vulpe

Hephaestin is a vertebrate multicopper ferroxidase important for the transfer of dietary iron from intestinal cells to the blood. Hephaestin is mutated in the sex-linked anemia mouse, resulting in iron deficiency. However, sex-linked anemia mice still retain some hephaestin ferroxidase activity. They survive, breed, and their anemia improves with age. To gain a better understanding of the role of hephaestin in iron homeostasis, we used the Cre-lox system to generate knockout mouse models with whole body or intestine-specific (Villin promoter) ablation of hephaestin. Both types of mice were viable, indicating that hephaestin is not essential and that other mechanisms, multicopper ferroxidase-dependent or not, must compensate for hephaestin deficiency. The knockout strains, however, both developed a microcytic, hypochromic anemia, suggesting severe iron deficiency and confirming that hephaestin plays an important role in body iron acquisition. Consistent with this, the knockout mice accumulated iron in duodenal enterocytes and had reduced intestinal iron absorption. In addition, the similarities of the phenotypes of the whole body and intestine-specific hephaestin knockout mice clarify the important role of hephaestin specifically in intestinal enterocytes in maintaining whole body iron homeostasis. These mouse models will serve as valuable tools to study the role of hephaestin and associated proteins in iron transport in the small intestine and other tissues.


Environmental Science & Technology | 2015

Gene Transcription, Metabolite and Lipid Profiling in Eco-Indicator Daphnia magna Indicate Diverse Mechanisms of Toxicity by Legacy and Emerging Flame-Retardants

Leona D. Scanlan; Alexandre V. Loguinov; Quincy Teng; Philipp Antczak; Kathleen P. Dailey; Daniel Thomas Nowinski; Jonah Kornbluh; Xin Xin Lin; Erica Lachenauer; Audrey Arai; Nora K. Douglas; Francesco Falciani; Heather M. Stapleton; Chris D. Vulpe

The use of chemical flame-retardants (FR) in consumer products has steadily increased over the last 30 years. Toxicity data exist for legacy FRs such as pentabromodiphenyl ether (pentaBDE), but less is known about effects of new formulations. To address this issue, the toxicity of seven FR chemicals and formulations was assessed on the freshwater crustacean Daphnia magna. Acute 48-h nominal LC50 values for penta- and octabromodiphenyl ether (pentaBDE, octaBDE), Firemaster 550 (FM550), Firemaster BZ-54 (BZ54), bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP), triphenyl phosphate (TPhP), and nonbrominated BEH-TEBP analog bis(2-ethylhexyl) phthalate (BEHP) ranged from 0.058 mg/L (pentaBDE) to 3.96 mg/L (octaBDE). mRNA expression, (1)H NMR-based metabolomic and lipidomic profiling at 1/10 LC50 revealed distinct patterns of molecular response for each exposure, suggesting pentaPBDE affects transcription and translation, octaBDE and BEH-TEBP affect glycosphingolipid biosynthesis and BZ54 affects Wnt and Hedgehog signal pathways as well as glycosaminoglycan degradation. Brominated components of FM550 (i.e., BZ54) were significantly higher in Daphnia after 48 h following 1/10 LC50 exposure. FM550 elicited significant mRNA changes at five concentrations across a range from 1/10(6) LC50 to 1/2 LC50. Analyses suggest FM550 impairs nutrient utilization or uptake in Daphnia.


Journal of Nutrition | 2015

Hephaestin and Ceruloplasmin Play Distinct but Interrelated Roles in Iron Homeostasis in Mouse Brain

Ruiwei Jiang; Chao Hua; Yike Wan; Bo Jiang; Huiyin Hu; Jiashuo Zheng; Brie K. Fuqua; Joshua L. Dunaief; Gregory J. Anderson; Samuel David; Chris D. Vulpe; Huijun Chen

BACKGROUNDnIron accumulation in the central nervous system (CNS) is a common feature of many neurodegenerative diseases. Multicopper ferroxidases (MCFs) play an important role in cellular iron metabolism. However, the role of MCFs in the CNS in health and disease remains poorly characterized.nnnOBJECTIVEnThe aim was to study the role of hephaestin (HEPH) and ceruloplasmin (CP) in CNS iron metabolism and homeostasis.nnnMETHODSnIron concentrations and L-ferritin protein levels of selected brain regions were determined in global hephaestin knockout (Heph KO), global ceruloplasmin knockout (Cp KO), and wild-type (WT) male mice at 6-7 mo of age. Gene expression of divalent metal transporter 1 (Dmt1), ferroportin 1 (Fpn1), Heph, Cp, and transferrin receptor 1 (Tfrc) and HEPH protein level was quantitated in the same brain regions.nnnRESULTSnIron and L-ferritin protein levels were significantly increased in Heph KO mouse brain cortex (iron: 30%, P < 0.05; L-ferritin: 200%, P < 0.05), hippocampus (iron: 80%, P < 0.05; L-ferritin: 300%, P < 0.05), brainstem (iron: 20%, P < 0.05; L-ferritin: 150%, P < 0.05), and cerebellum (iron: 20%, P < 0.05; L-ferritin: 100%, P < 0.05) regions than in WT and Cp KO mouse brain regions at 6 mo of age. Expression of the Heph gene was significantly increased in the Cp KO mouse cortex (100%; P < 0.01), hippocampus (350%; P < 0.001), brainstem (30%; P < 0.01), and cerebellum (150%; P < 0.001) than in WT controls, and Cp gene expression was significantly decreased in the Heph KO mouse hippocampus (20%; P < 0.05) than in WT control mice at 6 mo of age.nnnCONCLUSIONSnAblation of HEPH or CP results in disordered brain iron homeostasis in mice. Heph KO may provide a novel model for neurodegenerative disorders.


Frontiers in Genetics | 2014

Functional toxicology: tools to advance the future of toxicity testing

Brandon D. Gaytán; Chris D. Vulpe

The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds—information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes.


Chemosphere | 2016

Ecotoxicogenomics: Microarray interlaboratory comparability.

Doris E. Vidal-Dorsch; Steven M. Bay; Shelly L. Moore; Blythe A. Layton; Alvine C. Mehinto; Chris D. Vulpe; Marianna Brown-Augustine; Alex Loguinov; Helen C. Poynton; Natàlia Garcia-Reyero; Edward J. Perkins; Lynn Escalon; Nancy D. Denslow; Colli-Dula R. Cristina; Tri Doan; Shweta Shukradas; Joy Bruno; Lorraine Brown; Graham Van Agglen; Paula Jackman; Megan Bauer

Transcriptomic analysis can complement traditional ecotoxicology data by providing mechanistic insight, and by identifying sub-lethal organismal responses and contaminant classes underlying observed toxicity. Before transcriptomic information can be used in monitoring and risk assessment, it is necessary to determine its reproducibility and detect key steps impacting the reliable identification of differentially expressed genes. A custom 15K-probe microarray was used to conduct transcriptomics analyses across six laboratories with estuarine amphipods exposed to cyfluthrin-spiked or control sediments (10 days). Two sample types were generated, one consisted of total RNA extracts (Ex) from exposed and control samples (extracted by one laboratory) and the other consisted of exposed and control whole body amphipods (WB) from which each laboratory extracted RNA. Our findings indicate that gene expression microarray results are repeatable. Differentially expressed data had a higher degree of repeatability across all laboratories in samples with similar RNA quality (Ex) when compared to WB samples with more variable RNA quality. Despite such variability a subset of genes were consistently identified as differentially expressed across all laboratories and sample types. We found that the differences among the individual laboratory results can be attributed to several factors including RNA quality and technical expertise, but the overall results can be improved by following consistent protocols and with appropriate training.


Journal of Gastroenterology and Hepatology | 2015

Natural history of HFE simple heterozygosity for C282Y and H63D: A prospective 12-year study

Sophie Zaloumis; Katrina J. Allen; Nadine A. Bertalli; Lidija Turkovic; Martin B. Delatycki; Amanda Nicoll; Christine E. McLaren; Dallas R. English; John L. Hopper; Graham G. Giles; Gregory J. Anderson; John K. Olynyk; Lawrie W. Powell; Lyle C. Gurrin; Melanie Bahlo; Chris D. Vulpe; S. Forrest; Ashley R Fletcher

The risk of hemochromatosis‐related morbidity for HFE simple heterozygosity for either the C282Y or H63D substitutions in the HFE protein was assessed using a prospective community‐based cohort study.


Biometals | 2009

Age-related changes in iron homeostasis in mouse ferroxidase mutants.

Huijun Chen; Zouhair K. Attieh; Hua Gao; Gang Huang; Trent Su; Weixiong Ke; Chris D. Vulpe

Disorders of iron metabolism are a significant problem primarily in young and old populations. In this study, We compared 1-year-old C57BL6/J mice on iron deficient, iron overload, or iron sufficient diets with two similarly aged genetic models of disturbed iron homeostasis, the sla (sex-linked anemia), and the ceruloplasmin knockout mice (Cp−/−) on iron sufficient diet. We found tissue specific changes in sla and nutritional iron deficiency including decreased liver Hamp1 expression and increased protein expression of the enterocyte basolateral iron transport components, hephaestin and ferroportin. In contrast, the Cp−/− mice did not show significantly increased Hamp1 expression despite increased liver iron suggesting that regulation is independent of liver iron levels. Together, these results suggest that older mice have a distinct response to alterations in iron metabolism and that age must be considered in future studies of iron metabolism.

Collaboration


Dive into the Chris D. Vulpe's collaboration.

Top Co-Authors

Avatar

Gregory J. Anderson

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Brie K. Fuqua

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua L. Dunaief

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge