Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Daum is active.

Publication


Featured researches published by Chris Daum.


PLOS Genetics | 2016

The Epigenomic Landscape of Prokaryotes

Matthew J. Blow; Tyson A. Clark; Chris Daum; Adam M. Deutschbauer; Alexey Fomenkov; Roxanne Fries; Jeff Froula; Dongwan D. Kang; Rex R. Malmstrom; Richard D. Morgan; Janos Posfai; Kanwar Singh; Axel Visel; Zhiying Zhao; Edward M. Rubin; Jonas Korlach; Len A. Pennacchio; Richard J. Roberts

DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.


Standards in Genomic Sciences | 2010

Complete genome sequence of Haliangium ochraceum type strain (SMP-2T)

Natalia Ivanova; Chris Daum; Elke Lang; Birte Abt; Markus Kopitz; Elizabeth Saunders; Alla Lapidus; Susan Lucas; Tijana Glavina del Rio; Matt Nolan; Hope Tice; Alex Copeland; Jan Fang Cheng; Feng Chen; David Bruce; Lynne Goodwin; Sam Pitluck; Konstantinos Mavromatis; Amrita Pati; Natalia Mikhailova; Amy Chen; Krishna Palaniappan; Miriam Land; Loren Hauser; Yun Juan Chang; Cynthia D. Jeffries; John C. Detter; Thomas Brettin; Manfred Rohde; Markus Göker

Haliangium ochraceum Fudou et al. 2002 is the type species of the genus Haliangium in the myxococcal family ‘Haliangiaceae’. Members of the genus Haliangium are the first halophilic myxobacterial taxa described. The cells of the species follow a multicellular lifestyle in highly organized biofilms, called swarms, they decompose bacterial and yeast cells as most myxobacteria do. The fruiting bodies contain particularly small coccoid myxospores. H. ochraceum encodes the first actin homologue identified in a bacterial genome. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the myxococcal suborder Nannocystineae, and the 9,446,314 bp long single replicon genome with its 6,898 protein-coding and 53 RNA genes is part of the GenomicEncyclopedia ofBacteria andArchaea project.


Molecular Biology and Evolution | 2016

Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities

László G. Nagy; Robert Riley; Andrew Tritt; Catherine Adam; Chris Daum; Dimitrios Floudas; Hui Sun; Jagjit S. Yadav; Jasmyn Pangilinan; Karl-Henrik Larsson; Kenji Matsuura; Kerrie Barry; Kurt LaButti; Rita Kuo; Robin A. Ohm; Sukanta S. Bhattacharya; Takashi Shirouzu; Yuko Yoshinaga; Francis L. Martin; Igor V. Grigoriev; David S. Hibbett

Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.


Applied and Environmental Microbiology | 2014

Harnessing Genetic Diversity in Saccharomyces cerevisiae for Fermentation of Xylose in Hydrolysates of Alkaline Hydrogen Peroxide-Pretreated Biomass

Trey K. Sato; Tongjun Liu; Lucas S. Parreiras; Daniel L. Williams; Dana J. Wohlbach; Benjamin D. Bice; Irene M. Ong; Rebecca J. Breuer; Li Qin; Donald Busalacchi; Shweta Deshpande; Chris Daum; Audrey P. Gasch; David B. Hodge

ABSTRACT The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na+, acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production.


Mbio | 2015

Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast Trichosporon oleaginosus: Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems

Robert Kourist; Felix Bracharz; Jan Lorenzen; On Kracht; Mansi Chovatia; Chris Daum; Shweta Deshpande; Anna Lipzen; Matt Nolan; Robin A. Ohm; Igor V. Grigoriev; Sheng Sun; Joseph Heitman; Thomas Brück; Minou Nowrousian

ABSTRACT Microbial fermentation of agro-industrial waste holds great potential for reducing the environmental impact associated with the production of lipids for industrial purposes from plant biomass. However, the chemical complexity of many residues currently prevents efficient conversion into lipids, creating a high demand for strains with the ability to utilize all energy-rich components of agricultural residues. Here, we present results of genome and transcriptome analyses of Trichosporon oleaginosus. This oil-accumulating yeast is able to grow on a wide variety of substrates, including pentoses and N-acetylglucosamine, making it an interesting candidate for biotechnological applications. Transcriptomics shows specific changes in gene expression patterns under lipid-accumulating conditions. Furthermore, gene content and expression analyses indicate that T. oleaginosus is well-adapted for the utilization of chitin-rich biomass. We also focused on the T. oleaginosus mating type, because this species is a member of the Tremellomycetes, a group that has been intensively analyzed as a model for the evolution of sexual development, the best-studied member being Cryptococcus neoformans. The structure of the T. oleaginosus mating-type regions differs significantly from that of other Tremellomycetes and reveals a new evolutionary trajectory paradigm. Comparative analysis shows that recruitment of developmental genes to the ancestral tetrapolar mating-type loci occurred independently in the Trichosporon and Cryptococcus lineages, supporting the hypothesis of a trend toward larger mating-type regions in fungi. IMPORTANCE Finite fossil fuel resources pose sustainability challenges to society and industry. Microbial oils are a sustainable feedstock for biofuel and chemical production that does not compete with food production. We describe genome and transcriptome analyses of the oleaginous yeast Trichosporon oleaginosus, which can accumulate up to 70% of its dry weight as lipids. In contrast to conventional yeasts, this organism not only shows an absence of diauxic effect while fermenting hexoses and pentoses but also effectively utilizes xylose and N-acetylglucosamine, which are building blocks of lignocellulose and chitin, respectively. Transcriptome analysis revealed metabolic networks that govern conversion of xylose or N-acetylglucosamine as well as lipid accumulation. These data form the basis for a targeted strain optimization strategy. Furthermore, analysis of the mating type of T. oleaginosus supports the hypothesis of a trend toward larger mating-type regions in fungi, similar to the evolution of sex chromosomes in animals and plants. Finite fossil fuel resources pose sustainability challenges to society and industry. Microbial oils are a sustainable feedstock for biofuel and chemical production that does not compete with food production. We describe genome and transcriptome analyses of the oleaginous yeast Trichosporon oleaginosus, which can accumulate up to 70% of its dry weight as lipids. In contrast to conventional yeasts, this organism not only shows an absence of diauxic effect while fermenting hexoses and pentoses but also effectively utilizes xylose and N-acetylglucosamine, which are building blocks of lignocellulose and chitin, respectively. Transcriptome analysis revealed metabolic networks that govern conversion of xylose or N-acetylglucosamine as well as lipid accumulation. These data form the basis for a targeted strain optimization strategy. Furthermore, analysis of the mating type of T. oleaginosus supports the hypothesis of a trend toward larger mating-type regions in fungi, similar to the evolution of sex chromosomes in animals and plants.


Standards in Genomic Sciences | 2011

Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2T) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010.

Hans-Peter Klenk; Alla Lapidus; Olga Chertkov; Alex Copeland; Tijana Glavina del Rio; Matt Nolan; Susan Lucas; Feng Chen; Hope Tice; Jan-Fang Cheng; Cliff Han; David Bruce; Lynne Goodwin; Sam Pitluck; Amrita Pati; Natalia Ivanova; Konstantinos Mavromatis; Chris Daum; Amy Chen; Krishna Palaniappan; Yun-Juan Chang; Miriam Land; Loren Hauser; Cynthia D. Jeffries; John C. Detter; Manfred Rohde; Birte Abt; Rüdiger Pukall; Markus Göker; James Bristow

Bacillus tusciae Bonjour & Aragno 1994 is a hydrogen-oxidizing, thermoacidophilic spore former that lives as a facultative chemolithoautotroph in solfataras. Although 16S rRNA gene sequencing was well established at the time of the initial description of the organism, 16S sequence data were not available and the strain was placed into the genus Bacillus based on limited chemotaxonomic information. Despite the now obvious misplacement of strain T2 as a member of the genus Bacillus in 16S rRNA-based phylogenetic trees, the misclassification remained uncorrected for many years, which was likely due to the extremely difficult, analysis-hampering cultivation conditions and poor growth rate of the strain. Here we provide a taxonomic re-evaluation of strain T2T (= DSM 2912 = NBRC 15312) and propose its reclassification as the type strain of a new species, Kyrpidia tusciae, and the type species of the new genus Kyrpidia, which is a sister-group of Alicyclobacillus. The family Alicyclobacillaceae da Costa and Rainey, 2010 is emended. The 3,384,766 bp genome with its 3,323 protein-coding and 78 RNA genes is part of the GenomicEncyclopedia ofBacteria andArchaea project.


Standards in Genomic Sciences | 2011

Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2 T ) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov...

Hans-Peter Klenk; Alla Lapidus; Olga Chertkov; Alex Copeland; Tijana Glavina del Rio; Matt Nolan; Susan Lucas; Feng Chen; Hope Tice; Jan-Fang Cheng; Cliff Han; David Bruce; Lynne Goodwin; Sam Pitluck; Amrita Pati; Natalia Ivanova; Konstantinos Mavromatis; Chris Daum; Amy Chen; Krishna Palaniappan; Yun-Juan Chang; Miriam Land; Loren Hauser; Cynthia D. Jeffries; John C. Detter; Manfred Rohde; Birte Abt; Rüdiger Pukall; Markus Göker; James Bristow

Bacillus tusciae Bonjour & Aragno 1994 is a hydrogen-oxidizing, thermoacidophilic spore former that lives as a facultative chemolithoautotroph in solfataras. Although 16S rRNA gene sequencing was well established at the time of the initial description of the organism, 16S sequence data were not available and the strain was placed into the genus Bacillus based on limited chemotaxonomic information. Despite the now obvious misplacement of strain T2 as a member of the genus Bacillus in 16S rRNA-based phylogenetic trees, the misclassification remained uncorrected for many years, which was likely due to the extremely difficult, analysis-hampering cultivation conditions and poor growth rate of the strain. Here we provide a taxonomic re-evaluation of strain T2T (= DSM 2912 = NBRC 15312) and propose its reclassification as the type strain of a new species, Kyrpidia tusciae, and the type species of the new genus Kyrpidia, which is a sister-group of Alicyclobacillus. The family Alicyclobacillaceae da Costa and Rainey, 2010 is emended. The 3,384,766 bp genome with its 3,323 protein-coding and 78 RNA genes is part of the GenomicEncyclopedia ofBacteria andArchaea project.


Frontiers in Microbiology | 2017

Genome data provides high support for generic boundaries in Burkholderia sensu lato

C.W. Beukes; Marike Palmer; Puseletso Manyaka; Wai Y. Chan; Juanita R. Avontuur; Elritha Van Zyl; Marcel Huntemann; Alicia Clum; Manoj Pillay; Krishnaveni Palaniappan; Neha Varghese; Natalia Mikhailova; Dimitrios Stamatis; T. B. K. Reddy; Chris Daum; Nicole Shapiro; Victor Markowitz; Natalia Ivanova; Nikos C. Kyrpides; Tanja Woyke; Jochen Blom; William B. Whitman; Stephanus N. Venter; Emma Theodora Steenkamp

Although the taxonomy of Burkholderia has been extensively scrutinized, significant uncertainty remains regarding the generic boundaries and composition of this large and heterogeneous taxon. Here we used the amino acid and nucleotide sequences of 106 conserved proteins from 92 species to infer robust maximum likelihood phylogenies with which to investigate the generic structure of Burkholderia sensu lato. These data unambiguously supported five distinct lineages, of which four correspond to Burkholderia sensu stricto and the newly introduced genera Paraburkholderia, Caballeronia, and Robbsia. The fifth lineage was represented by P. rhizoxinica. Based on these findings, we propose 13 new combinations for those species previously described as members of Burkholderia but that form part of Caballeronia. These findings also suggest revision of the taxonomic status of P. rhizoxinica as it is does not form part of any of the genera currently recognized in Burkholderia sensu lato. From a phylogenetic point of view, Burkholderia sensu stricto has a sister relationship with the Caballeronia+Paraburkholderia clade. Also, the lineages represented by P. rhizoxinica and R. andropogonis, respectively, emerged prior to the radiation of the Burkholderia sensu stricto+Caballeronia+Paraburkholderia clade. Our findings therefore constitute a solid framework, not only for supporting current and future taxonomic decisions, but also for studying the evolution of this assemblage of medically, industrially and agriculturally important species.


Nature plants | 2015

Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae

Chew Yee Ngan; Chee-Hong Wong; Cindy Choi; Yuko Yoshinaga; Katherine Louie; Jing Jia; Cindy Chen; Benjamin P. Bowen; Haoyu Cheng; Lauriebeth Leonelli; Rita Kuo; Richard Baran; José G. García-Cerdán; Abhishek Pratap; Mei Wang; Joanne Lim; Hope Tice; Chris Daum; Jian Xu; Trent R. Northen; Axel Visel; James Bristow; Krishna K. Niyogi; Chia-Lin Wei

Alga-derived lipids represent an attractive potential source of biofuels. However, lipid accumulation in algae is a stress response tightly coupled to growth arrest, thereby imposing a major limitation on productivity. To identify transcriptional regulators of lipid accumulation, we performed an integrative chromatin signature and transcriptomic analysis to decipher the regulation of lipid biosynthesis in the alga Chlamydomonas reinhardtii. Genome-wide histone modification profiling revealed remarkable differences in functional chromatin states between the algae and higher eukaryotes and uncovered regulatory components at the core of lipid accumulation pathways. We identified the transcription factor, PSR1, as a pivotal switch that triggers cytosolic lipid accumulation. Dissection of the PSR1-induced lipid profiles corroborates its role in coordinating multiple lipid-inducing stress responses. The comprehensive maps of functional chromatin signatures in a major clade of eukaryotic life and the discovery of a transcriptional regulator of algal lipid metabolism will facilitate targeted engineering strategies to mediate high lipid production in microalgae.


New Phytologist | 2017

Genome‐wide associations with flowering time in switchgrass using exome‐capture sequencing data

Paul P. Grabowski; Joseph Evans; Chris Daum; Shweta Deshpande; Kerrie Barry; Megan Kennedy; Guillaume P. Ramstein; Shawn M. Kaeppler; C. Robin Buell; Yiwei Jiang; Michael D. Casler

Flowering time is a major determinant of biomass yield in switchgrass (Panicum virgatum), a perennial bioenergy crop, because later flowering allows for an extended period of vegetative growth and increased biomass production. A better understanding of the genetic regulation of flowering time in switchgrass will aid the development of switchgrass varieties with increased biomass yields, particularly at northern latitudes, where late-flowering but southern-adapted varieties have high winter mortality. We use genotypes derived from recently published exome-capture sequencing, which mitigates challenges related to the large, highly repetitive and polyploid switchgrass genome, to perform genome-wide association studies (GWAS) using flowering time data from a switchgrass association panel in an effort to characterize the genetic architecture and genes underlying flowering time regulation in switchgrass. We identify associations with flowering time at multiple loci, including in a homolog of FLOWERING LOCUS T and in a locus containing TIMELESS, a homolog of a key circadian regulator in animals. Our results suggest that flowering time variation in switchgrass is due to variation at many positions across the genome. The relationship of flowering time and geographic origin indicates likely roles for genes in the photoperiod and autonomous pathways in generating switchgrass flowering time variation.

Collaboration


Dive into the Chris Daum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanja Woyke

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia Clum

Joint Genome Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge