Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris E. Cooper is active.

Publication


Featured researches published by Chris E. Cooper.


Biochemical Journal | 2001

Nitric oxide synthases: structure, function and inhibition

Wendy Karen Alderton; Chris E. Cooper; Richard G. Knowles

This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.


The Lancet | 2002

Association between mitochondrial dysfunction and severity and outcome of septic shock.

David Brealey; Michael P. Brand; Iain Hargreaves; Simon Heales; John M. Land; Ryszard T. Smolenski; Nathan A. Davies; Chris E. Cooper; Mervyn Singer

BACKGROUND Sepsis-induced multiple organ failure is the major cause of mortality and morbidity in critically ill patients. However, the precise mechanisms by which this dysfunction is caused remain to be elucidated. We and others have shown raised tissue oxygen tensions in septic animals and human beings, suggesting reduced ability of the organs to use oxygen. Because ATP production by mitochondrial oxidative phosphorylation accounts for more than 90% of total oxygen consumption, we postulated that mitochondrial dysfunction results in organ failure, possibly due to nitric oxide, which is known to inhibit mitochondrial respiration in vitro and is produced in excess in sepsis. METHODS We did skeletal muscle biopsies on 28 critically ill septic patients within 24 h of admission to intensive care, and on nine control patients undergoing elective hip surgery. The biopsy samples were analysed for respiratory-chain activity (complexes I-IV), ATP concentration, reduced glutathione (an intracellular antioxidant) concentration, and nitrite/nitrate concentrations (a marker of nitric oxide production). FINDINGS Skeletal muscle ATP concentrations were significantly lower in the 12 patients with sepsis who subsequently died than in the 16 septic patients who survived (p=0.0003) and in controls (p=0.05). Complex I activity had a significant inverse correlation with norepinephrine requirements (a proxy for shock severity, p=0.0003) and nitrite/nitrate concentrations (p=0.0004), and a significant positive correlation with concentrations of reduced glutathione (p=0.006) and ATP (p=0.03). INTERPRETATION In septic patients, we found an association between nitric oxide overproduction, antioxidant depletion, mitochondrial dysfunction, and decreased ATP concentrations that relate to organ failure and eventual outcome. These data implicate bioenergetic failure as an important pathophysiological mechanism underlying multiorgan dysfunction.


FEBS Letters | 1994

Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase

Guy C. Brown; Chris E. Cooper

Nitric oxide (NO) reversibly inhibited oxygen consumption of brain synaptosomes. Inhibition was reversible, occurred at the level of cytochrome oxidase, and was apparently competitive with oxygen, with half‐inhibition by 270 nM NO at oxygen concentrations around 145 μM and by 60 nM NO at around 30μM O2. Isolated cytochrome oxidase was inhibited by similar levels of NO. These levels of NO are within the measured physiological and pathological range for a number of tissues and conditions, suggesting that NO inhibition of cytochrome oxidase and the competion with oxygen may occur in vivo.


Pediatric Research | 1994

Delayed ("secondary") cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy

Ann Lorek; Y Takei; E Cady; Js Wyatt; Juliet Penrice; A D Edwards; Donald Peebles; M Wylezinska; H Owen-Reece; Vincent Kirkbride; Chris E. Cooper; Rf Aldridge; S Roth; Guy C. Brown; David T. Delpy; E. O. R. Reynolds

ABSTRACT: Phosphorus (31P) spectra from the brains of severely birth-asphyxiated human infants are commonly normal on the first day of life. Later, cerebral energy failure develops, which carries a serious prognosis. The main purpose of this study was to test the hypothesis that this delayed (“secondary”) energy failure could be reproduced in the newborn piglet after a severe acute reversed cerebral hypoxicischemic insult. Twelve piglets were subjected to temporary occlusion of the common carotid arteries and hypoxemia [mean arterial Po2 3.1 (SD 0.6) kPa]. Mean cerebral phosphocreatine concentration [PCr]/inorganic orthophosphate concentration [Pi] decreased from 1.40 (SD 0.29) to 0.01 (SD 0.02), and nucleotide triphosphate concentration [NTP]/exchangeable phosphate pool concentration [EPP] decreased from 0.19 (SD 0.02) to 0.06 (SD 0.04) (p<0.001 for each decrease). On reperfusion and reoxygenation of the brain, mean [PCr]/[Pi] and [NTP]/[EPP] returned to baseline. Observations continuing for the next 48 h showed that [PCr]/[Pi] again decreased, in spite of normal arterial Po2, mean arterial blood pressure, and blood glucose, to 0.62 (SD 0.61) at 24 h (p<0.01) and 0.49 (SD 0.37) at 48 h (p<0.001). [NTP]/[EPP] also decreased, but to a lesser degree. Intracellular pH remained unchanged. These findings appeared identical with those seen in birth-asphyxiated human infants. No changes in cerebral metabolite concentrations took place in six control piglets. The severity of secondary energy failure, as judged by the lowest [PCr]/[Pi] recorded at 24-48 h, was directly related to the extent of acute energy depletion, obtained as the time integral of reduction in [NTP]/[EPP] (p<0.0001). This animal model of secondary energy failure may prove useful for testing cerebroprotective strategies.


Biochimica et Biophysica Acta | 1999

Nitric oxide and iron proteins.

Chris E. Cooper

Nitric oxide interactions with iron are the most important biological reactions in which NO participates. Reversible binding to ferrous haem iron is responsible for the observed activation of guanylate cyclase and inhibition of cytochrome oxidase. Unlike carbon monoxide or oxygen, NO can also bind reversibly to ferric iron. The latter reaction is responsible for the inhibition of catalase by NO. NO reacts with the oxygen adduct of ferrous haem proteins (e.g. oxyhaemoglobin) to generate nitrate and ferric haem; this reaction is responsible for the majority of NO metabolism in the vasculature. NO can also interact with iron-sulphur enzymes (e.g. aconitase, NADH dehydrogenase). This review describes the underlying kinetics, thermodynamics, mechanisms and biological role of the interactions of NO with iron species (protein and non-protein bound). The possible significance of iron reactions with reactive NO metabolites, in particular peroxynitrite and nitroxyl anion, is also discussed.


Journal of Bioenergetics and Biomembranes | 2008

The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance.

Chris E. Cooper; Guy C. Brown

The four gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S) and hydrogen cyanide (HCN) all readily inhibit oxygen consumption by mitochondrial cytochrome oxidase. This inhibition is responsible for much of their toxicity when they are applied externally to the body. However, recently these gases have all been implicated, to greater or lesser extents, in normal cellular signalling events. In this review we analyse the chemistry of this inhibition, comparing and contrasting mechanism and discussing physiological consequences. The inhibition by NO and CO is dependent on oxygen concentration, but that of HCN and H2S is not. NO and H2S are readily metabolised by oxidative processes within cytochrome oxidase. In these cases the enzyme may act as a physiological detoxifier of these gases. CO oxidation is much slower and unlikely to be as physiologically important. The evidence for normal physiological levels of these gases interacting with cytochrome oxidase is equivocal, in part because there is little robust data about their steady state concentrations. A reasonable case can be made for NO, and perhaps CO and H2S, inhibiting cytochrome oxidase in vivo, but endogenous levels of HCN seem unlikely to be high enough.


Pediatric Research | 1995

Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet

Marianne Thoresen; Juliet Penrice; Ann Lorek; E Cady; M Wylezinska; Vincent Kirkbride; Chris E. Cooper; Guy C. Brown; A D Edwards; John S. Wyatt; E. O. R. Reynolds

ABSTRACT: Severely birth-asphyxiated human infants develop delayed (“secondary”) cerebral energy failure, which carries a poor prognosis, during the first few days of life. This study tested the hypothesis that mild hypothermia after severe transient cerebral hypoxia-ischemia decreases the severity of delayed energy failure in the newborn piglet. Six piglets underwent temporary occlusion of the common carotid arteries and hypoxemia. Resuscitation was started when cerebral [phosphocreatine (PCr)]/ [inorganic phosphate (Pi)] as determined by phosphorus magnetic resonance spectroscopy had fallen almost to zero and [nucleotide triphosphate (NTP)]/[exchangeable phosphate pool (EPP)] had fallen below about 30% of baseline. Rectal and tympanic temperatures were then reduced to 35°C for 12 h after which normothermia (38.5°C) was resumed. Spectroscopy results over the next 64 h were compared with previously established data from 12 piglets similarly subjected to transient cerebral hypoxia-ischemia, but maintained normothermic, and six sham-operated controls.The mean severity of the primary insult (judged by the time integral of depletion of [NTP]/[EPP]) was similar in the hypothermic and normothermic groups. In the normothermic group, [PCr]/[Pi] and [NTP]/[EPP] recovered after the acute insult and then fell again. Minimum values for these variables observed between 24 and 48 h were significantly higher in the hypothermic group and not significantly different from the control values (p < 0.05, analysis of variance). A large reduction in secondary energy failure relative to the extent of the primary insult was shown and no further fall in either [PCr]/[Pi] or [NTP]/[EPP] took place up to 64 h in the hypothermic piglets. We conclude that mild hypothermia after a severe acute cerebral hypoxicischemic insult ameliorated delayed energy failure.


Sports Medicine | 2005

Exercise-Induced Oxidative Stress Myths, Realities and Physiological Relevance

Niels B. J. Vollaard; Jerry P. Shearman; Chris E. Cooper

Although assays for the most popular markers of exercise-induced oxidative stress may experience methodological flaws, there is sufficient credible evidence to suggest that exercise is accompanied by an increased generation of free radicals, resulting in a measurable degree of oxidative modifications to various molecules. However, the mechanisms responsible are unclear. A common assumption that increased mitochondrial oxygen consumption leads per se to increased reactive oxygen species (ROS) production is not supported by in vitro and in vivo data. The specific contributions of other systems (xanthine oxidase, inflammation, haem protein auto-oxidation) are poorly characterised. It has been demonstrated that ROS have the capacity to contribute to the development of muscle fatigue in situ, but there is still a lack of convincing direct evidence that ROS impair exercise performance in vivo in humans. It remains unclear whether exercise-induced oxidative modifications have little significance, induce harmful oxidative damage, or are an integral part of redox regulation. It is clear that ROS play important roles in numerous physiological processes at rest; however, the detailed physiological functions of ROS in exercise remain to be elucidated.


Journal of Biological Chemistry | 1998

A Causative Role for Redox Cycling of Myoglobin and Its Inhibition by Alkalinization in the Pathogenesis and Treatment of Rhabdomyolysis-induced Renal Failure

Kevin Moore; Steve Holt; Rakesh P. Patel; Dimitri A. Svistunenko; William Zackert; David Goodier; Brandon J. Reeder; Martine Clozel; Radhi Anand; Chris E. Cooper; Jason D. Morrow; Michael T. Wilson; Victor M. Darley-Usmar; L. Jackson Roberts

Muscle injury (rhabdomyolysis) and subsequent deposition of myoglobin in the kidney causes renal vasoconstriction and renal failure. We tested the hypothesis that myoglobin induces oxidant injury to the kidney and the formation of F2-isoprostanes, potent renal vasoconstrictors formed during lipid peroxidation. In low density lipoprotein (LDL), myoglobin induced a 30-fold increase in the formation of F2-isoprostanes by a mechanism involving redox cycling between ferric and ferryl forms of myoglobin. In an animal model of rhabdomyolysis, urinary excretion of F2-isoprostanes increased by 7.3-fold compared with controls. Administration of alkali, a treatment for rhabdomyolysis, improved renal function and significantly reduced the urinary excretion of F2-isoprostanes by ∼80%. EPR and UV spectroscopy demonstrated that myoglobin was deposited in the kidneys as the redox competent ferric myoglobin and that it’s concentration was not decreased by alkalinization. Kinetic studies demonstrated that the reactivity of ferryl myoglobin, which is responsible for inducing lipid peroxidation, is markedly attenuated at alkaline pH. This was further supported by demonstrating that myoglobin-induced oxidation of LDL was inhibited at alkaline pH. These data strongly support a causative role for oxidative injury in the renal failure of rhabdomyolysis and suggest that the protective effect of alkalinization may be attributed to inhibition of myoglobin-induced lipid peroxidation.


Neuropathology and Applied Neurobiology | 1997

Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia–ischaemia

X. Yue; Huseyin Mehmet; Juliet Penrice; Chris E. Cooper; Ernest B. Cady; John S. Wyatt; E. O. R. Reynolds; A D Edwards; Mv Squier

We have used a porcine model of global hypoxia–ischaemia to examine the mode and extent of cell damage to the newborn brain. Apoptosis and necrosis were observed in neurons and glial cells following transient cerebral hypoxic–ischaemic injury (HII) by haematoxylin and eosin staining and by in situ end labelling (ISEL). Quantitative neuropathological analysis of the cingulate gyrus, the hippocampus and the cerebellum showed that the degree of both apoptosis and necrosis increased with the severity of injury in these brain areas. The hippocampus and cerebellar cortex were particularly sensitive to HII. Furthermore, some cell types were more susceptible to a particular mode of cell death. In the cerebellum, Purkinje cells died by necrosis but never by apoptosis. In contrast, cerebellar granule cells were frequently apoptotic, but never necrotic. In the hippocampus, apoptosis occurred in the inner layer neurons of the dentate fascia and necrosis in the more mature outer layer neurons. This suggests that immature neurons may be more prone to apoptotic death while terminally differentiated neurons die by necrosis. Apoptosis but not necrosis was seen in cerebral white matter. This model may help to elucidate the factors that determine cell fate following HII and aid the development of cerebroprotective strategies.

Collaboration


Dive into the Chris E. Cooper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clare E. Elwell

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge