Chris E. Jordan
National Oceanic and Atmospheric Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chris E. Jordan.
Ecological Applications | 2003
Michelle M. McClure; Elizabeth E. Holmes; Beth L. Sanderson; Chris E. Jordan
Twelve salmonid evolutionarily significant units (ESUs) throughout the Columbia River Basin are currently listed as threatened or endangered under the Endangered Species Act; these ESUs are affected differentially by a variety of human activities. We present a standardized quantitative status and risk assessment for 152 listed salmonid stocks in these ESUs and 24 nonlisted stocks. Using data from 1980–2000, which represents a time of stable conditions in the Columbia River hydropower system and a period of ocean conditions generally regarded as poor for Columbia Basin salmonids, we estimated the status of these stocks under two different assumptions: that hatchery-reared spawners were not reproducing during the period of the censuses, or that hatchery-reared spawners were reproducing and thus that reproduction from hatchery inputs was masking population trends. We repeated the analyses using a longer time period containing both “good” and “bad” ocean conditions (1965–2000) as a first step toward determini...
Ecology Letters | 2013
Erin E. Peterson; Jay M. Ver Hoef; Dan Isaak; Jeffrey A. Falke; Marie-Jos ee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas A. Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger
Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within the context of stream ecology. Within this context, we summarise the key innovations of a new family of spatial statistical models that describe spatial relationships in DENs. Finally, we discuss how different network analyses may be combined to address more complex and novel research questions. While our main focus is streams, the taxonomy of network analyses is also relevant anywhere spatial patterns in both network and 2-D space can be used to explore the influence of multi-scale processes on biota and their habitat (e.g. plant morphology and pest infestation, or preferential migration along stream or road corridors).
Reviews in Fish Biology and Fisheries | 2014
Matthew R. Sloat; Dylan J. Fraser; Jason B. Dunham; Jeffrey A. Falke; Chris E. Jordan; John R. McMillan; Haley A. Ohms
Reproductive tactics and migratory strategies in Pacific and Atlantic salmonines are inextricably linked through the effects of migration (or lack thereof) on age and size at maturity. In this review, we focus on the ecological and evolutionary patterns of freshwater maturation in salmonines, a key process resulting in the diversification of their life histories. We demonstrate that the energetics of maturation and reproduction provides a unifying theme for understanding both the proximate and ultimate causes of variation in reproductive schedules among species, populations, and the sexes. We use probabilistic maturation reaction norms to illustrate how variation in individual condition, in terms of body size, growth rate, and lipid storage, influences the timing of maturation. This useful framework integrates both genetic and environmental contributions to conditional strategies for maturation and, in doing so, demonstrates how flexible life histories can be both heritable and subject to strong environmental influences. We review evidence that the propensity for freshwater maturation in partially anadromous species is predictable across environmental gradients at geographic and local spatial scales. We note that growth is commonly associated with the propensity for freshwater maturation, but that life-history responses to changes in growth caused by temperature may be strikingly different than changes caused by differences in food availability. We conclude by exploring how contemporary management actions can constrain or promote the diversity of maturation phenotypes in Pacific and Atlantic salmonines and caution against underestimating the role of freshwater maturing forms in maintaining the resiliency of these iconic species.
Scientific Reports | 2016
Nicolaas Bouwes; Nicholas Weber; Chris E. Jordan; W. Carl Saunders; Ian A. Tattam; Carol Volk; Joseph M. Wheaton; Michael M. Pollock
Beaver have been referred to as ecosystem engineers because of the large impacts their dam building activities have on the landscape; however, the benefits they may provide to fluvial fish species has been debated. We conducted a watershed-scale experiment to test how increasing beaver dam and colony persistence in a highly degraded incised stream affects the freshwater production of steelhead (Oncorhynchus mykiss). Following the installation of beaver dam analogs (BDAs), we observed significant increases in the density, survival, and production of juvenile steelhead without impacting upstream and downstream migrations. The steelhead response occurred as the quantity and complexity of their habitat increased. This study is the first large-scale experiment to quantify the benefits of beavers and BDAs to a fish population and its habitat. Beaver mediated restoration may be a viable and efficient strategy to recover ecosystem function of previously incised streams and to increase the production of imperiled fish populations.
Fisheries | 2016
Stephen N. Bennett; George R. Pess; Nicolaas Bouwes; Phil Roni; Robert E. Bilby; Sean Gallagher; Jim Ruzycki; Thomas W. Buehrens; Kirk Krueger; William J. Ehinger; Joseph Anderson; Chris E. Jordan; Brett Bowersox; Correigh M. Greene
Across the Pacific Northwest, at least 17 intensively monitored watershed projects have been implemented to test the effectiveness of a broad range of stream restoration actions for increasing the freshwater production of salmon and steelhead and to better understand fish–habitat relationships. We assess the scope and status of these projects and report on challenges implementing them. We suggest that all intensively monitored watersheds should contain key elements based on sound experimental design concepts and be implemented within an adaptive management framework to maximize learning. The most significant challenges reported by groups were (1) improving coordination between funders, restoration groups, and researchers so that restoration and monitoring actions occur based on the project design and (2) maintaining consistent funding to conduct annual monitoring and evaluation of data. However, we conclude that despite these challenges, the intensively monitored watershed approach is the most reliable me...
Canadian Journal of Fisheries and Aquatic Sciences | 2008
Jean-YvesCourboisJ.-Y. Courbois; Stephen Katz; Daniel J. Isaak; E. AshleySteelE.A. Steel; Russell F. Thurow; A. MichelleWargo RubA.M. Wargo Rub; TonyOlsenT. Olsen; Chris E. Jordan
Precise, unbiased estimates of population size are an essential tool for fisheries management. For a wide variety of salmonid fishes, redd counts from a sample of reaches are commonly used to monitor annual trends in abundance. Using a 9-year time series of georeferenced censuses of Chinook salmon (Oncorhynchus tshawytscha) redds from central Idaho, USA, we evaluated a wide range of common sampling strategies for estimating the total abundance of redds. We evaluated two sampling-unit sizes (200 and 1000 m reaches), three sample proportions (0.05, 0.10, and 0.29), and six sampling strategies (index sampling, simple random sampling, systematic sampling, stratified sampling, adaptive cluster sampling, and a spatially balanced design). We evaluated the strategies based on their accuracy (confidence interval coverage), precision (relative standard error), and cost (based on travel time). Accuracy increased with increasing number of redds, increasing sample size, and smaller sampling units. The total number of ...
Environmental Biology of Fishes | 2012
Justin S. Mills; Jason B. Dunham; Gordon H. Reeves; John R. McMillan; Christian E. Zimmerman; Chris E. Jordan
We described and predicted spatial variation in marine migration (anadromy) of female Oncorhynchus mykiss in the John Day River watershed, Oregon. We collected 149 juvenile O. mykiss across 72 sites and identified locations used by anadromous females by assigning maternal origin (anadromous versus non-anadromous) to each juvenile. These assignments used comparisons of strontium to calcium ratios in otolith primordia and freshwater growth regions to indicate maternal origin. We used logistic regression to predict probability of anadromy in relation to mean annual stream runoff using data from a subset of individuals. This model correctly predicted anadromy in a second sample of individuals with a moderate level of accuracy (e.g., 68% correctly predicted with a 0.5 classification threshold). Residuals from the models were not spatially autocorrelated, suggesting that remaining variability in the expression of anadromy was due to localized influences, as opposed to broad-scale gradients unrelated to mean annual stream runoff. These results are important for the management of O. mykiss because anadromous individuals (steelhead) within the John Day River watershed are listed as a threatened species, and it is difficult to discern juvenile steelhead from non-anadromous individuals (rainbow trout) in the field. Our results provide a broad-scale description and prediction of locations supporting anadromy, and new insight for habitat restoration, monitoring, and research to better manage and understand the expression of anadromy in O. mykiss.
Ecosphere | 2015
Katie Barnas; Stephen Katz; David E. Hamm; Monica C. Diaz; Chris E. Jordan
Conservation and recovery plans for endangered species around the world, including the US Endangered Species Act (ESA), rely on habitat assessments for data, conclusions and planning of short and long-term management strategies. In the Pacific Northwest of the United States, hundreds of millions of dollars (
Earth Surface Processes and Landforms | 2018
Joseph M. Wheaton; Nicolaas Bouwes; Peter A. McHugh; Carla Saunders; Sara Bangen; Phillip Bailey; Matt Nahorniak; Eric Wall; Chris E. Jordan
US) per year are spent on thousands of restoration projects across the extent of ESA-listed Pacific salmon—often without clearly connecting restoration actions to ecosystem and population needs. Numerous decentralized administrative units select and fund projects based on agency/organization needs or availability of funds with little or no centralized planning nor post-project monitoring. The need therefore arises for metrics to identify whether ecosystem and species level restoration needs are being met by the assemblage of implemented projects. We reviewed habitat assessments and recovery plans to identify ecological needs and statistically compared these to the distribution of co-located restoratio...
Journal of Maps | 2017
Gary R. O’Brien; Joseph M. Wheaton; Kirstie Fryirs; Peter A. McHugh; Nicolaas Bouwes; Gary Brierley; Chris E. Jordan
With high-resolution topography and imagery in fluvial environments, the potential to quantify physical fish habitat at the reach scale has never been better. Increased availability of hydraulic, temperature and food availability data and models have given rise to a host of species and life stage specific ecohydraulic fish habitat models ranging from simple, empirical habitat suitability curve driven models, to fuzzy inference systems to fully mechanistic bioenergetic models. However, few examples exist where such information has been upscaled appropriately to evaluate entire fish populations. We present a framework for applying such ecohydraulic models from over 905 sites in 12 sub-watersheds of the Columbia River Basin (USA), to assess status and trends in anadromous salmon populations. We automated the simulation of computational engines to drive the hydraulics, and subsequent ecohydraulic models using cloud computing for over 2075 visits from 2011 to 2015 at 905 sites. We also characterize each sites geomorphic reach type, habitat condition, geomorphic unit assemblage, primary production potential and thermal regime. We then independently produce drainage network-scale models to estimate these same parameters from coarser, remotely sensed data available across entire populations within the Columbia River Basin. These variables give us a basis for imputation of reach-scale capacity estimates across drainage networks. Combining capacity estimates with survival estimates from mark–recapture monitoring allows a more robust quantification of capacity for freshwater life stages (i.e. adult spawning, juvenile rearing) of the anadromous life cycle. We use these data to drive life cycle models of populations, which not only include the freshwater life stages but also the marine and migration life stages through the hydropower system. More fundamentally, we can begin to look at more realistic, spatially explicit, tributary habitat restoration scenarios to examine whether the enormous financial investment on such restoration actions can help recover these populations or prevent their extinction. Copyright