Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Gehring is active.

Publication


Featured researches published by Chris Gehring.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels

Zhi Qi; Rajeev Verma; Chris Gehring; Yube Yamaguchi; Yichen Zhao; Clarence A. Ryan; Gerald A. Berkowitz

A family of peptide signaling molecules (AtPeps) and their plasma membrane receptor AtPepR1 are known to act in pathogen-defense signaling cascades in plants. Little is currently known about the molecular mechanisms that link these signaling peptides and their receptor, a leucine-rich repeat receptor-like kinase, to downstream pathogen-defense responses. We identify some cellular activities of these molecules that provide the context for a model for their action in signaling cascades. AtPeps activate plasma membrane inwardly conducting Ca2+ permeable channels in mesophyll cells, resulting in cytosolic Ca2+ elevation. This activity is dependent on their receptor as well as a cyclic nucleotide-gated channel (CNGC2). We also show that the leucine-rich repeat receptor-like kinase receptor AtPepR1 has guanylyl cyclase activity, generating cGMP from GTP, and that cGMP can activate CNGC2-dependent cytosolic Ca2+ elevation. AtPep-dependent expression of pathogen-defense genes (PDF1.2, MPK3, and WRKY33) is mediated by the Ca2+ signaling pathway associated with AtPep peptides and their receptor. The work presented here indicates that extracellular AtPeps, which can act as danger-associated molecular patterns, signal by interaction with their receptor, AtPepR1, a plasma membrane protein that can generate cGMP. Downstream from AtPep and AtPepR1 in a signaling cascade, the cGMP-activated channel CNGC2 is involved in AtPep- and AtPepR1-dependent inward Ca2+ conductance and resulting cytosolic Ca2+ elevation. The signaling cascade initiated by AtPeps leads to expression of pathogen-defense genes in a Ca2+-dependent manner.


Plant Molecular Biology | 2004

Nomenclature for members of the expansin superfamily of genes and proteins

Hans Kende; Kent J. Bradford; David A. Brummell; Hyung-Taeg Cho; Daniel J. Cosgrove; Andrew Fleming; Chris Gehring; Yi Lee; Simon J. McQueen-Mason; Jocelyn K. C. Rose; Laurentius A. C. J. Voesenek

Hans Kende*, Kent J. Bradford, David A. Brummell, Hyung-Taeg Cho, Daniel J. Cosgrove, Andrew J. Fleming, Chris Gehring, Yi Lee, Simon McQueen-Mason, Jocelyn K.C. Rose and Laurentius A.C.J. Voesenek MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA (*author for correspondence; e-mail [email protected]); Seed Biotechnology Center, University of California, Davis CA 95616, USA; Crop and Food Research, Private Bag 11600, Palmerston North, 5301, New Zealand; School of Biosciences and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea; Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA; Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; University of the Western Cape, Department of Biotechnology, Private Bag X17, Bellville 7535, South Africa; Department of Tobacco Science, Chungbuk National University, 48 Gaesin-dong Hungduk-ku, Chongju 361-763, Republic of Korea; Biology Department, University of York, PO Box 373, York, YO10 5YW, UK; Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA; Plant Ecophysiology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands


FEBS Letters | 2004

Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels

Lara Donaldson; Ndiko Ludidi; Marc R. Knight; Chris Gehring; Katherine J. Denby

A guanylyl cyclase has been recently identified in Arabidopsis but, despite the use of pharmacological inhibitors to infer roles of the second messenger 3′,5′‐cyclic guanosine monophosphate (cGMP), very few measurements of actual cGMP levels in plants are available. Here, we demonstrate that cGMP levels in Arabidopsis seedlings increase rapidly (⩽5 s) and to different degrees after salt and osmotic stress, and that the increases are prevented by treatment with LY, an inhibitor of soluble guanylyl cyclases. In addition, we provide evidence to suggest that salt stress activates two cGMP signalling pathways – an osmotic, calcium‐independent pathway and an ionic, calcium‐dependent pathway.


New Phytologist | 2009

Ozone and nitric oxide induce cGMP‐dependent and ‐independent transcription of defence genes in tobacco

Stefania Pasqualini; Stuart Meier; Chris Gehring; Laura Madeo; Marco Fornaciari; Bruno Romano; Luisa Ederli

Here, we analyse the temporal signatures of ozone (O3)-induced hydrogen peroxide(H2O2) and nitric oxide (NO) and the role of the second messenger guanosine3′,5′-cyclic monophosphate (cGMP) in transcriptional changes of genes diagnostic for biotic and abiotic stress responses. Within 90 min O3 induced H2O2 and NO peaks and we demonstrate that NO donors cause rapid H2O2 accumulation in tobacco (Nicotiana tabacum) leaf. Ozone also causes highly significant, late (> 2 h) and sustained cGMP increases, suggesting that the second messenger may not be required in all early (< 2 h) responses to O3,but is essential and sufficient for the induction of some O3-dependent pathways.This hypothesis was tested resolving the time course of O3-induced transcript accumulation of alternative oxidase (AOX1a), glutathione peroxidase (GPX),aminocyclopropancarboxylic acid synthase (ACS2) that is critical for the synthesis of ethylene, phenylalanine ammonia lyase (PALa) and the pathogenesis-related protein PR1a.The data show that early O3 and NO caused transcriptional activation of the scavenger encoding proteins AOX1a, GPX and the induction of ethylene production through ACS2 are cGMP independent. By contrast, the early response of PALa and the late response of PR1a show critical dependence on cGMP.


Journal of Biological Chemistry | 2011

The Phytosulfokine (PSK) Receptor Is Capable of Guanylate Cyclase Activity and Enabling Cyclic GMP-dependent Signaling in Plants

Lusisizwe Kwezi; Oziniel Ruzvidzo; Janet I. Wheeler; Kershini Govender; Sylvana Iacuone; Philip E. Thompson; Chris Gehring; Helen R. Irving

Phytosulfokines (PSKs) are sulfated pentapeptides that stimulate plant growth and differentiation mediated by the PSK receptor (PSKR1), which is a leucine-rich repeat receptor-like kinase. We identified a putative guanylate cyclase (GC) catalytic center in PSKR1 that is embedded within the kinase domain and hypothesized that the GC works in conjunction with the kinase in downstream PSK signaling. We expressed the recombinant complete kinase (cytoplasmic) domain of AtPSKR1 and show that it has serine/threonine kinase activity using the Ser/Thr peptide 1 as a substrate with an approximate Km of 7.5 μm and Vmax of 1800 nmol min−1 mg−1 of protein. This same recombinant protein also has GC activity in vitro that is dependent on the presence of either Mg2+ or Mn2+. Overexpression of the full-length AtPSKR1 receptor in Arabidopsis leaf protoplasts raised the endogenous basal cGMP levels over 20-fold, indicating that the receptor has GC activity in vivo. In addition, PSK-α itself, but not the non-sulfated backbone, induces rapid increases in cGMP levels in protoplasts. Together these results indicate that the PSKR1 contains dual GC and kinase catalytic activities that operate in vivo and that this receptor constitutes a novel class of enzymes with overlapping catalytic domains.


Plant Physiology and Biochemistry | 2009

NO release by nitric oxide donors in vitro and in planta

Luisa Ederli; Lara Reale; Laura Madeo; Francesco Ferranti; Chris Gehring; Marco Fornaciari; Bruno Romano; Stefania Pasqualini

Artificial nitric oxide (NO) donors are widely used as tools to study the role of NO in plants. However, reliable and reproducible characterisation of metabolic responses induced by different NO donors is complicated by the variability of their NO release characteristics. The latter are affected by different physical and biological factors including temperature and light. Here we critically evaluate NO release characteristics of the donors sodium nitroprusside (SNP), S-nitrosoglutathione (GSNO) and nitric oxide synthase (NOS), both in vitro and in planta (Nicotiana tabacum L. cv. BelW3) and assess their effects on NO dependent processes such as the transcriptional regulation of the mitochondrial alternative oxidase gene (AOX1a), accumulation of H(2)O(2) and induction of cell death. We demonstrate that, contrary to NOS and SNP, GSNO is not an efficient NO generator in leaf tissue. Furthermore, spectrophotometric measurement of NO with a haemoglobin assay, rather than diaminofluorescein (DAF-FM) based detection, is best suited for the quantification of tissue NO. In spite of the different NO release signatures by SNP and NOS in tissue, the NO dependent responses examined were similar, suggesting that there is a critical threshold for the NO response.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis.

Natalia Gottig; Betiana S. Garavaglia; Lucas D. Daurelio; Alex J. Valentine; Chris Gehring; Elena G. Orellano; Jorgelina Ottado

Plant natriuretic peptides (PNPs) are a class of extracellular, systemically mobile molecules that elicit a number of plant responses important in homeostasis and growth. The bacterial citrus pathogen, Xanthomonas axonopodis pv. citri, also contains a gene encoding a PNP-like protein, XacPNP, that shares significant sequence similarity and identical domain organization with plant PNPs but has no homologues in other bacteria. We have expressed and purified XacPNP and demonstrated that the bacterial protein alters physiological responses including stomatal opening in plants. Although XacPNP is not expressed under standard nutrient rich culture conditions, it is strongly induced under conditions that mimic the nutrient poor intercellular apoplastic environment of leaves, as well as in infected tissue, suggesting that XacPNP transcription can respond to the host environment. To characterize the role of XacPNP during bacterial infection, we constructed a XacPNP deletion mutant. The lesions caused by this mutant were more necrotic than those observed with the wild-type, and bacterial cell death occurred earlier in the mutant. Moreover, when we expressed XacPNP in Xanthomonas axonopodis pv. vesicatoria, the transgenic bacteria caused less necrotic lesions in the host than the wild-type. In conclusion, we present evidence that a plant-like bacterial PNP can enable a plant pathogen to modify host responses to create conditions favorable to its own survival.


PLOS Genetics | 2005

Gametophytic Selection in Arabidopsis thaliana Supports the Selective Model of Intron Length Reduction

Cathal Seoighe; Chris Gehring; Laurence D. Hurst

Why do highly expressed genes have small introns? This is an important issue, not least because it provides a testing ground to compare selectionist and neutralist models of genome evolution. Some argue that small introns are selectively favoured to reduce the costs of transcription. Alternatively, large introns might permit complex regulation, not needed for highly expressed genes. This “genome design” hypothesis evokes a regionalized model of control of expression and hence can explain why intron size covaries with intergene distance, a feature also consistent with the hypothesis that highly expressed genes cluster in genomic regions with high deletion rates. As some genes are expressed in the haploid stage and hence subject to especially strong purifying selection, the evolution of genes in Arabidopsis provides a novel testing ground to discriminate between these possibilities. Importantly, controlling for expression level, genes that are expressed in pollen have shorter introns than genes that are expressed in the sporophyte. That genes flanking pollen-expressed genes have average-sized introns and intergene distances argues against regional mutational biases and genomic design. These observations thus support the view that selection for efficiency contributes to the reduction in intron length and provide the first report of a molecular signature of strong gametophytic selection.


BMC Plant Biology | 2008

Co-expression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides

Stuart Meier; René Bastian; Lara Donaldson; Shane Murray; Vladimir B. Bajic; Chris Gehring

BackgroundPlant natriuretic peptides (PNPs) are a class of systemically mobile molecules distantly related to expansins. While several physiological responses to PNPs have been reported, their biological role has remained elusive. Here we use a combination of expression correlation analysis, meta-analysis of gene expression profiles in response to specific stimuli and in selected mutants, and promoter content analysis to infer the biological role of the Arabidopsis thaliana PNP, AtPNP-A.ResultsA gene ontology analysis of AtPNP-A and the 25 most expression correlated genes revealed a significant over representation of genes annotated as part of the systemic acquired resistance (SAR) pathway. Transcription of these genes is strongly induced in response to salicylic acid (SA) and its functional synthetic analogue benzothiadiazole S-methylester (BTH), a number of biotic and abiotic stresses including many SA-mediated SAR-inducing conditions, as well as in the constitutive SAR expressing mutants cpr5 and mpk4 which have elevated SA levels. Furthermore, the expression of AtPNP-A was determined to be significantly correlated with the SAR annotated transcription factor, WRKY 70, and the promoters of AtPNP-A and the correlated genes contain an enrichment in the core WRKY binding W-box cis-elements. In constitutively expressing WRKY 70 lines the expression of AtPNP-A and the correlated genes, including the SAR marker genes, PR-2 and PR-5, were determined to be strongly induced.ConclusionThe co-expression analyses, both in wild type and mutants, provides compelling evidence that suggests AtPNP-A may function as a component of plant defence responses and SAR in particular. The presented evidence also suggests that the expression of AtPNP-A is controlled by WRKY transcription factors and WRKY 70 in particular. AtPNP-A shares many characteristics with PR proteins in that its transcription is strongly induced in response to pathogen challenges, it contains an N-terminal signalling peptide and is secreted into the extracellular space and along with PR-1, PR-2 and PR-5 proteins it has been isolated from the Arabidopsis apoplast. Based on these findings we suggest that AtPNP-A could be classified as a newly identified PR protein.


Plant Signaling & Behavior | 2009

Deciphering cGMP signatures and cGMP-dependent pathways in plant defence.

Stuart Meier; Laura Madeo; Luisa Ederli; Lara Donaldson; Stefania Pasqualini; Chris Gehring

The second messenger, 3’, 5’-cyclic monophosphate (cGMP), is a critical component of many different processes in plants while guanylyl cyclases that catalyse the formation of cGMP from GTP have remained somewhat elusive in higher plants. Consequently, two major aims are the discovery of novel GCs and the identification of cGMP mediated processes. Recently, we have reported temporal signatures of ozone (O3)-induced hydrogen peroxide (H2O2) and nitric oxide (NO) generation, their effect on cGMP generation, and consequent transcriptional changes of genes diagnostic for stress responses in tobacco. We demonstrated that O3 and NO induced early transcriptional activation of the scavenger encoding proteins, alternative oxidase (AOX1a), glutathione peroxidase (GPX) and the induction of ethylene production through aminocyclopropancarboxylic acid synthase (ACS2) are cGMP-independent. By contrast, the early response of the phenylalanine ammonia lyase gene (PALa) and the late response of the gene encoding the pathogenesis-related protein (PR1a) show critical dependence on cGMP. Here we show differential cGMP responses to virulent and avirulent Pseudomonas syringae strains and propose that host-pathogen recognition and/or down-stream processes are transduced by complex cGMP signatures. This is in accordance with the identification of a growing number of multi-domain molecules in Arabidopsis that are reported to contain putative functional GC catalytic centres.

Collaboration


Dive into the Chris Gehring's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart Meier

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

Cathal Seoighe

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lusisizwe Kwezi

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

Ndiko Ludidi

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge