Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris M. Marsay is active.

Publication


Featured researches published by Chris M. Marsay.


Nature | 2014

Reconciliation of the carbon budget in the ocean’s twilight zone

Sarah L. C. Giering; Richard Sanders; Richard S. Lampitt; Thomas R. Anderson; C. Tamburini; Mehdi Boutrif; Mikhail V. Zubkov; Chris M. Marsay; Stephanie A. Henson; Kevin Saw; Kathryn Cook; Daniel J. Mayor

Photosynthesis in the surface ocean produces approximately 100 gigatonnes of organic carbon per year, of which 5 to 15 per cent is exported to the deep ocean. The rate at which the sinking carbon is converted into carbon dioxide by heterotrophic organisms at depth is important in controlling oceanic carbon storage. It remains uncertain, however, to what extent surface ocean carbon supply meets the demand of water-column biota; the discrepancy between known carbon sources and sinks is as much as two orders of magnitude. Here we present field measurements, respiration rate estimates and a steady-state model that allow us to balance carbon sources and sinks to within observational uncertainties at the Porcupine Abyssal Plain site in the eastern North Atlantic Ocean. We find that prokaryotes are responsible for 70 to 92 per cent of the estimated remineralization in the twilight zone (depths of 50 to 1,000 metres) despite the fact that much of the organic carbon is exported in the form of large, fast-sinking particles accessible to larger zooplankton. We suggest that this occurs because zooplankton fragment and ingest half of the fast-sinking particles, of which more than 30 per cent may be released as suspended and slowly sinking matter, stimulating the deep-ocean microbial loop. The synergy between microbes and zooplankton in the twilight zone is important to our understanding of the processes controlling the oceanic carbon sink.


Global Biogeochemical Cycles | 2012

The relative contribution of fast and slow sinking particles to ocean carbon export

Jennifer Sian Riley; Richard Sanders; Chris M. Marsay; F. A. C. Le Moigne; Eric P. Achterberg; Alex J. Poulton

Particulate organic carbon (POC) generated by primary production and exported to depth, is an important pathway for carbon transfer to the abyss, where it is stored over climatically significant timescales. These processes constitute the biological carbon pump. A spectrum of particulate sinking velocities exists throughout the water column, however numerical models often simplify this spectrum into suspended, fast and slow sinking particles. Observational studies suggest the spectrum of sinking speeds in the ocean is strongly bimodal with >85 POC flux contained within two pools with sinking speeds of 350 m day -1. We deployed a Marine Snow Catcher (MSC) to estimate the magnitudes of the suspended, fast and slow sinking pools and their fluxes at the Porcupine Abyssal Plain site (48°N, 16.5°W) in summer 2009. The POC concentrations and fluxes determined were 0.2μ g C L -1 and 54 mg C m -2 day -1 for fast sinking particles, 5μ g C L -1 and 92μ mg C m -2 day -1 for slow sinking particles and 97 g C L -1 for suspended particles. Our flux estimates were comparable with radiochemical tracer methods and neutrally buoyant sediment traps. Our observations imply: (1) biomineralising protists, on occasion, act as nucleation points for aggregate formation and accelerate particle sinking; (2) fast sinking particles alone were sufficient to explain the abyssal POC flux; and (3) there is no evidence for ballasting of the slow sinking flux and the slow sinking particles were probably entirely remineralised in the twilight zone. Copyright 2012 by the American Geophysical Union.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean

Chris M. Marsay; Richard Sanders; Stephanie A. Henson; Katsiaryna Pabortsava; Eric P. Achterberg; Richard S. Lampitt

Significance A key factor regulating the air−sea balance of carbon dioxide (CO2) is the sinking of particles containing organic carbon from the surface to the deep ocean. The depth at which this carbon is released back into the water (remineralization) has a strong influence on atmospheric CO2 concentration. Here we show a significant relationship between the remineralization depth of sinking organic carbon flux in the upper ocean and water temperature, with shallower remineralization in warmer waters. Our results contrast with data from deep-sea sediment traps, highlighting the importance of upper ocean remineralization to our understanding of the ocean’s biological carbon pump. Our results suggest that predicted future increases in ocean temperature will result in reduced CO2 storage by the oceans. The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean.


Geophysical Research Letters | 2014

Estimating the benthic efflux of dissolved iron on the Ross Sea continental shelf

Chris M. Marsay; Peter N. Sedwick; Michael S. Dinniman; Pamela M. Barrett; S. L. Mack; Dennis J. McGillicuddy

Continental margin sediments provide a potentially large but poorly constrained source of dissolved iron (dFe) to the upper ocean. The Ross Sea continental shelf is one region where this benthic supply is thought to play a key role in regulating the magnitude of seasonal primary production. Here we present data collected during austral summer 2012 that reveal contrasting low surface (0.08 ± 0.07 nM) and elevated near-seafloor (0.74 ± 0.47 nM) dFe concentrations. Combining these observations with results from a high-resolution physical circulation model, we estimate dFe efflux of 5.8 × 107 mol yr−1 from the deeper portions (>400 m) of the Ross Sea continental shelf; more than sufficient to account for the inferred “winter reserve” dFe inventory at the onset of the growing season. In addition, elevated dFe concentrations observed over shallower bathymetry suggest that such features provide additional inputs of dFe to the euphotic zone throughout the year.


Geophysical Research Letters | 2015

Iron supply and demand in an Antarctic shelf ecosystem

Dennis J. McGillicuddy; Peter N. Sedwick; Michael S. Dinniman; Kevin R. Arrigo; Thomas S. Bibby; B. J. W. Greenan; Eileen E. Hofmann; John M. Klinck; Walker O. Smith; S. L. Mack; Chris M. Marsay; Bettina Sohst; G. L. van Dijken

The Ross Sea sustains a rich ecosystem and is the most productive sector of the Southern Ocean. Most of this production occurs within a polynya during the November–February period, when the availability of dissolved iron (dFe) is thought to exert the major control on phytoplankton growth. Here we combine new data on the distribution of dFe, high-resolution model simulations of ice melt and regional circulation, and satellite-based estimates of primary production to quantify iron supply and demand over the Ross Sea continental shelf. Our analysis suggests that the largest sources of dFe to the euphotic zone are wintertime mixing and melting sea ice, with a lesser input from intrusions of Circumpolar Deep Water and a small amount from melting glacial ice. Together these sources are in approximate balance with the annual biological dFe demand inferred from satellite-based productivity algorithms, although both the supply and demand estimates have large uncertainties.


Global Biogeochemical Cycles | 2012

Controls on dissolved cobalt in surface waters of the Sargasso Sea: Comparisons with iron and aluminum

Rachel U. Shelley; Peter N. Sedwick; Thomas S. Bibby; Patricia Cabedo-Sanz; Thomas M. Church; Rodney J. Johnson; Anna I. Macey; Chris M. Marsay; Edward R. Sholkovitz; Simon J. Ussher; Paul J. Worsfold; Maeve C. Lohan

Dissolved cobalt (dCo), iron (dFe) and aluminum (dAl) were determined in water column samples along a meridional transect (?31°N to 24°N) south of Bermuda in June 2008. A general north-to-south increase in surface concentrations of dFe (0.3–1.6 nM) and dAl (14–42 nM) was observed, suggesting that aerosol deposition is a significant source of dFe and dAl, whereas no clear trend was observed for near-surface dCo concentrations. Shipboard aerosol samples indicate fractional solubility values of 8–100% for aerosol Co, which are significantly higher than corresponding estimates of the solubility of aerosol Fe (0.44–45%). Hydrographic observations and analysis of time series rain samples from Bermuda indicate that wet deposition accounts for most (>80%) of the total aeolian flux of Co, and hence a significant proportion of the atmospheric input of dCo to our study region. Our aerosol data imply that the atmospheric input of dCo to the Sargasso Sea is modest, although this flux may be more significant in late summer. The water column dCo profiles reveal a vertical distribution that predominantly reflects ‘nutrient-type’ behavior, versus scavenged-type behavior for dAl, and a hybrid of nutrient- and scavenged-type behavior for dFe. Mesoscale eddies also appear to impact on the vertical distribution of dCo. The effects of biological removal of dCo from the upper water column were apparent as pronounced sub-surface minima (21 ± 4 pM dCo), coincident with maxima in Prochlorococcus abundance. These observations imply that Prochlorococcus plays a major role in removing dCo from the euphotic zone, and that the availability of dCo may regulate Prochlorococcus growth in the Sargasso Sea.


Global Biogeochemical Cycles | 2017

Particle flux in the oceans: Challenging the steady state assumption

Sarah L. C. Giering; Richard Sanders; Adrian P. Martin; Stephanie A. Henson; Jennifer Sian Riley; Chris M. Marsay; David G. Johns

Atmospheric carbon dioxide levels are strongly controlled by the depth at which the organic matter that sinks out of the surface ocean is remineralized. This depth is generally estimated from particle flux profiles measured using sediment traps. Inherent in this analysis is a steady state assumption; that export from the surface does not significantly change in the time it takes material to reach the deepest trap. However, recent observations suggest that a significant fraction of material in the mesopelagic zone sinks slowly enough to bring this into doubt. We use data from a study in the North Atlantic during July/August 2009 to challenge the steady state assumption. An increase in biogenic silica flux with depth was observed which we interpret, based on vertical profiles of diatom taxonomy, as representing the remnants of the spring diatom bloom sinking slowly (<40 m d-1). We were able to reproduce this behaviour using a simple model using satellite-derived export rates and literature-derived remineralization rates. We further provide a simple equation to estimate ‘additional’ (or ‘excess’) POC supply to the dark ocean during non-steady state conditions, which is not captured by traditional sediment trap deployments. In seasonal systems, mesopelagic net organic carbon supply could be wrong by as much as 25% when assuming steady state. We conclude that the steady state assumption leads to misinterpretation of particle flux profiles when input fluxes from the upper ocean vary on the order of weeks, such as in temperate and polar regions with strong seasonal cycles in export.


Geophysical Research Letters | 2016

Volcanic ash as an oceanic iron source and sink

Nicholas Rogan; Eric P. Achterberg; Frederic A. C. Le Moigne; Chris M. Marsay; Alessandro Tagliabue; Richard G. Williams

Volcanic ash deposition to the ocean forms a natural source of iron (Fe) to surface water microbial communities. Inputs of lithogenic material may also facilitate Fe removal through scavenging. Combining dissolved Fe (dFe) and thorium-234 observations alongside modeling, we investigate scavenging of Fe in the North Atlantic following the Eyjafjallajokull volcanic eruption. Under typical conditions biogenic particles dominate scavenging, whereas ash particles dominate during the eruption. The size of particles is important as smaller scavenging particles can become saturated with surface-associated ions. Model simulations indicate that ash deposition associated with Eyjafjallajokull likely led to net Fe removal. Our model suggests a threefold greater stimulation of biological activity if ash deposition had occurred later in the growing season when the region was Fe limited. The implications of ash particle scavenging, eruption timing, and particle saturation need to be considered when assessing the impact of ash deposition on the ocean Fe cycle and productivity.


Scientific Reports | 2018

Iron Biogeochemistry in the High Latitude North Atlantic Ocean

Eric P. Achterberg; Sebastian Steigenberger; Chris M. Marsay; Frédéric A. C. LeMoigne; Stuart C. Painter; Alex R. Baker; Douglas P. Connelly; C. Mark Moore; Alessandro Tagliabue; Toste Tanhua

Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world’s ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (<0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250–300 km. Particulate Fe formed the dominant pool, as evidenced by 4–17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m−2 d−1) was at least ca. 4–10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes.


Journal of Geophysical Research | 2017

Distributions, sources, and transformations of dissolved and particulate iron on the Ross Sea continental shelf during summer

Chris M. Marsay; Pamela M. Barrett; Dennis J. McGillicuddy; Peter N. Sedwick

We report water column dissolved iron (dFe) and particulate iron (pFe) concentrations from fifty stations sampled across the Ross Sea during austral summer (January-February) of 2012. Concentrations of dFe and pFe were measured in each of the major Ross Sea water masses, including the Ice Shelf Water and off-shelf Circumpolar Deep Water. Despite significant lateral variations in hydrography, macronutrient depletion and primary productivity across several different regions on the continental shelf, dFe concentrations were consistently low (<0.1 nM) in surface waters, with only a handful of stations showing elevated concentrations (0.20–0.45 nM) in areas of melting sea ice and near the Franklin Island platform. Across the study region, pFe associated with suspended biogenic material approximately doubled the inventory of bioavailable iron in surface waters. Our data reveal that the majority of the summertime iron inventory in the Ross Sea resides in dense shelf waters, with highest concentrations within 50 m of the seafloor. Higher dFe concentrations near the seafloor are accompanied by an increased contribution to pFe from authigenic and/or scavenged iron. Particulate manganese is also influenced by sediment resuspension near the seafloor but, unlike pFe, is increasingly associated with authigenic material higher in the water column. Together, these results suggest that, following depletion of the dFe derived from wintertime convective mixing and sea ice melt, recycling of pFe in the upper water column plays an important role in sustaining the summertime phytoplankton bloom in the Ross Sea polynya.

Collaboration


Dive into the Chris M. Marsay's collaboration.

Top Co-Authors

Avatar

Peter N. Sedwick

Bermuda Biological Station for Research

View shared research outputs
Top Co-Authors

Avatar

Dennis J. McGillicuddy

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. L. Mack

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar

Maeve C. Lohan

National Oceanography Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walker O. Smith

Virginia Institute of Marine Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge