Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Mills is active.

Publication


Featured researches published by Chris Mills.


Sports Biomechanics | 2010

Modifying landing mat material properties may decrease peak contact forces but increase forefoot forces in gymnastics landings

Chris Mills; Maurice R. Yeadon; Matthew T.G. Pain

This study investigated how changes in the material properties of a landing mat could minimise ground reaction forces (GRF) and internal loading on a gymnast during landing. A multi-layer model of a gymnastics competition landing mat and a subject-specific seven-link wobbling mass model of a gymnast were developed to address this aim. Landing mat properties (stiffness and damping) were optimised using a Simplex algorithm to minimise GRF and internal loading. The optimisation of the landing mat parameters was characterised by minimal changes to the mats stiffness ( < 0.5%) but increased damping (272%) compared to the competition landing mat. Changes to the landing mat resulted in reduced peak vertical and horizontal GRF and reduced bone bending moments in the shank and thigh compared to a matching simulation. Peak bone bending moments within the thigh and shank were reduced by 6% from 321.5 Nm to 302.5 Nm and GRF by 12% from 8626 N to 7552 N when compared to a matching simulation. The reduction in these forces may help to reduce the risk of bone fracture injury associated with a single landing and reduce the risk of a chronic injury such as a stress fracture.


Journal of Biomechanics | 2011

A protocol for monitoring soft tissue motion under compression garments during drop landings

Chris Mills; Joanna Scurr; Louise Wood

This study used a single-subject design to establish a valid and reliable protocol for monitoring soft tissue motion under compression garments during drop landings. One male participant performed six 40 cm drop landings onto a force platform, in three compression conditions (none, medium high). Five reflective markers placed on the thigh under the compression garment and five over the garment were filmed using two cameras (1000 Hz). Following manual digitisation, marker coordinates were reconstructed and their resultant displacements and maximum change in separation distance between skin and garment markers were calculated. To determine reliability of marker application, 35 markers were attached to the thigh over the high compression garment and filmed. Markers were then removed and re-applied on three occasions; marker separation and distance to thigh centre of gravity were calculated. Results showed similar ground reaction forces during landing trials. Significant reductions in the maximum change in separation distance between markers from no compression to high compression landings were reported. Typical errors in marker movement under and over the garment were 0.1mm in medium and high compression landings. Re-application of markers showed mean typical errors of 1mm in marker separation and <3mm relative to thigh centre of gravity. This paper presents a novel protocol that demonstrates sufficient sensitivity to detect reductions in soft tissue motion during landings in high compression garments compared to no compression. Additionally, markers placed under or over the garment demonstrate low variance in movement, and the protocol reports good reliability in marker re-application.


European Journal of Sport Science | 2015

Multiplanar breast kinematics during different exercise modalities

Deborah Risius; Alexandra Milligan; Chris Mills; Joanna Scurr

Abstract Multiplanar breast movement reduction is crucial to increasing physical activity participation amongst women. To date, research has focused on breast movement during running, but until breast movement is understood during different exercise modalities, the breast support requirements for specific activities are unknown. To understand breast support requirements during different exercise modalities, this study aimed to determine multiplanar breast kinematics during running, jumping and agility tasks. Sixteen 32D participants had markers attached to their right nipple and torso. Relative multiplanar breast displacement was calculated during bare-breasted treadmill running (10 kph), maximum countermovement jumping and an agility t-test. Exercise modality influenced the magnitude and direction of breast displacement, velocity and acceleration (p < .05). Jumping produced greater vertical breast displacement (.09 m) but less mediolateral breast displacement (.05 m) than running or the agility task, but agility tasks produced the highest multiplanar breast velocities and acceleration. Breast movement during jumping was predominantly in the vertical direction, whereas the agility task produced a greater percentage of mediolateral breast acceleration than running or jumping. Exercise modality impacted upon the magnitude and distribution of bare-breasted multiplanar breast kinematics in this homogenous 32D cohort. Therefore, to reduce breast movement in women of a 32D bra size, manufacturers may wish to design sport-specific products, with greater vertical support for exercise modalities incorporating jumping and greater mediolateral support for agility tasks.


Journal of Nonverbal Behavior | 2017

Evidence of big five and aggressive personalities in gait biomechanics

Liam Satchell; Paul Morris; Chris Mills; Liam O’Reilly; Paul Marshman; Lucy Akehurst

Behavioral observation techniques which relate action to personality have long been neglected (Furr and Funder in Handbook of research methods in personality psychology, The Guilford Press, New York, 2007) and, when employed, often use human judges to code behavior. In the current study we used an alternative to human coding (biomechanical research techniques) to investigate how personality traits are manifest in gait. We used motion capture technology to record 29 participants walking on a treadmill at their natural speed. We analyzed their thorax and pelvis movements, as well as speed of gait. Participants completed personality questionnaires, including a Big Five measure and a trait aggression questionnaire. We found that gait related to several of our personality measures. The magnitude of upper body movement, lower body movement, and walking speed, were related to Big Five personality traits and aggression. Here, we present evidence that some gait measures can relate to Big Five and aggressive personalities. We know of no other examples of research where gait has been shown to correlate with self-reported measures of personality and suggest that more research should be conducted between largely automatic movement and personality.


Journal of Sports Sciences | 2015

Breast motion asymmetry during running

Chris Mills; Debbie Risius; Joanna Scurr

Abstract Breast asymmetry is common in females, despite a similar driving force; dynamic activity may result in asymmetrical breast motion. This preliminary study investigated how breast categorisation (left/right or dominant/non-dominant) may affect breast support recommendations and its relationship with breast pain. Ten females ran on a treadmill at 10 kph in three breast supports (no bra, everyday bra, sports bra). Five reflective markers on the thorax and nipples were tracked using infrared cameras (200 Hz) during five running gait cycles in each breast support. Multiplanar displacements of both breasts were calculated relative to the thorax. Although the maximum individual participant difference was 2.4 cm (mediolaterally) between the left and right breast, no left/right differences were found in any direction or support condition. Notably, correlations between breast pain and anterioposterior breast displacement were stronger with the left breast (r = 0.614) and moderate with the right breast (r = 0.456). Following participant categorisation according to the greatest magnitude of superioinferior breast displacement (dominant breast), results showed significant differences in displacement for all directions across different breast supports. When using breast kinematic data to examine relationships with breast pain or to recommend breast support requirements, data on both breasts should be collected.


Human Movement Science | 2014

The effect of breast support on upper body muscle activity during 5km treadmill running

Alexandra Milligan; Chris Mills; Joanna Scurr

Breast support has previously been shown to influence surface EMG of the pectoralis major during running. Reductions in muscle activity have previously been associated with a reduction in energy cost, which may be advantageous for female runners. Ten female participants performed two self-paced (average pace 9 km h(-1)) 5 km treadmill runs under two breast support conditions (low and high); an additional bare-breasted 2 min run was also conducted. Surface EMG electrodes were positioned on the pectoralis major, anterior deltoid, medial deltoid, and upper trapezius, with data collected during the first 2 min of running and each kilometer interval thereafter. Reductions in peak EMG of the pectoralis major, anterior and medial deltoid were reported when participants ran in the high breast support during the initial intervals of the run (up to the second kilometer). The increased activation in the pectoralis major, anterior and medial deltoid in the low breast support may be due to increased tension within these muscles, induced by the greater breast pain experienced in the low breast support. This may be a strategy to reduce the independent breast movement causing the pain through increased muscular activation. This study further promotes the use of a high breast support during running with potential benefits for treadmill running associated with reductions in muscular demand during a 5 km run.


Journal of Biomechanics | 2016

Estimating the gravity induced three dimensional deformation of the breast

Chris Mills; Amy Sanchez; Joanna Scurr

As human breast tissue is continuously deformed by gravity, it is difficult to identify the non-loaded neutral breast position from which to take measurements. To estimate the neutral nipple position, this study proposed a simple novel method to counteract the three dimensional effect of gravity on the breast using the buoyant forces from water and soybean oil (ρWATER = 994kgm-3; ρOIL = 909kgm-3). Fourteen female participants with breast sizes ranging from 30 to 34in. under band and B to E cup size took part in this study. Each participant had their static gravity-loaded nipple position measured and their neutral nipple position estimated (as the midpoint between the nipple position during water and soybean oil immersion). Participants were asked to sit in each fluid and fully submerge their torso and breasts. The mean gravity-induced nipple displacements from the neutral nipple position were 15.3mm in the posterior direction, 7.4mm in the lateral direction, and 25.7mm in the inferior direction. Gravity had a significant (p < 0.05, r > 0.82) measurable effect on the static nipple position, particularly in the inferior and posterior directions. Furthermore the density difference between water and soybean oil produced a significant difference (p < 0.05, r = 0.72) in superior-inferior nipple position (5.6mm). These findings suggest that neglect of gravity-induced breast deformations may lead to errors when assessing breast position and its relationship to possible breast pain, and that water alone may not be sufficient to estimate the neutral nipple position.


Journal of Sports Sciences | 2015

The effect of breast support and breast pain on upper-extremity kinematics during running: implications for females with large breasts

Jennifer White; Chris Mills; Nick Ball; Joanna Scurr

Abstract The relationship between inappropriate breast support and upper-extremity kinematics for female runners is unclear. The purpose of this study was to investigate the effect of breast support and breast pain on upper-extremity kinematics during running. Eleven female recreational runners with larger breasts (UK D and E cup) completed a 7 min 20 s treadmill run (2.58 m · s−1) in a high and low breast support condition. Multi-planar breast and upper-extremity kinematic data were captured in each breast support condition by eight infrared cameras for 30 s towards the end of the run. Breast pain was rated at the end of each treadmill run using a numeric analogue scale. The high support bra reduced breast kinematics and decreased breast pain (P < 0.05). Upper-extremity kinematics did not differ between breast support conditions (P > 0.05), although some moderate positive correlations were found between thorax range of motion and breast kinematics (r = 0.54 to 0.73). Thorax and arm kinematics do not appear to be influenced by breast support level in female runners with large breasts. A high support bra that offers good multi-planar breast support is recommended for female runners with larger breasts to reduce breast pain.


Journal of Sports Sciences | 2015

Magnitude of multiplanar breast kinematics differs depending upon run distance

Alexandra Milligan; Chris Mills; Jo Corbett; Joanna Scurr

Abstract Recommendations for breast support, dynamic breast pain assessment, and implications for sports performance have been made within breast biomechanics research; however, these studies have been based upon short exercise protocols (2–5 min). The aim of this study was to investigate the effect of breast support on multiplanar breast kinematics over a 5-kilometre run. Ten female participants (34D or 32DD) conducted two 5-kilometre runs, in a low and high breast support. Relative multiplanar breast kinematics were averaged over five gait cycles at six intervals of a 5-kilometre run. Increases in multiplanar breast kinematics were reported from the start to the end of the run, with the greatest rate of increase in breast kinematics reported within the first two kilometres of running. The greatest relative increases in breast range of motion (34%), velocity (33%), and acceleration (41%) were reported in the superioinferior direction at the fifth kilometre (33 min of running) in the high breast support. Key findings suggest that the run distance, and therefore run duration, employed for both fundamental research and product validation protocols should be carefully considered and it is suggested that running protocols for assessing breast biomechanics should exceed 7 min.


Journal of Biomechanics | 2014

Is torso soft tissue motion really an artefact within breast biomechanics research

Chris Mills; Amy Loveridge; Alexandra Milligan; Debbie Risius; Joanna Scurr

For rigid body POSE estimation, any relative movement of the tracking markers on a segment is often referred to as an artefact; however this may be an important part of the signal within breast biomechanics. This study aimed to quantify differences in breast range of motion when calculated relative to the torso segment using either direct or segment optimised POSE estimation algorithms. Markers on the torso and right nipple were tracked using infrared cameras (200 Hz) during five running gait cycles in three breast support conditions (no bra, everyday bra and sports bra). Multiplanar breast range of motion was calculated relative to the torso segment using two POSE estimation algorithms. First, the torso segment was defined using direct POSE estimation (direct). Second, while standing stationary in the anatomical position; the positional data of the torso markers were used to construct the torso using segment optimised POSE estimation (optimised). The torso segment length defined using direct POSE estimation changed significantly by 3.4 cm compared to that of the segment optimisation POSE estimation in the no bra condition. Subsequently, superioinferior breast range of motion was significantly greater (p<0.017) when calculated using direct POSE estimation, within each of the three breast support conditions. Segment optimisation POSE estimation is recommended to minimise any differences in breast motion associated with intra segment deformation between physical activity types. However, either algorithm is recommended when evaluating different breast support garments, as a correctly fitted bra does not cause the torso markers to move relative to each other.

Collaboration


Dive into the Chris Mills's collaboration.

Top Co-Authors

Avatar

Joanna Scurr

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Loveridge

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debbie Risius

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Sanchez

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar

Jo Corbett

University of Portsmouth

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise Wood

University of Portsmouth

View shared research outputs
Researchain Logo
Decentralizing Knowledge