Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Morehouse is active.

Publication


Featured researches published by Chris Morehouse.


PLOS ONE | 2008

Type I Interferon: Potential Therapeutic Target for Psoriasis?

Yihong Yao; Laura Richman; Chris Morehouse; Melissa de los Reyes; Brandon W. Higgs; Anmarie Boutrin; Barbara White; Anthony J. Coyle; James G. Krueger; Peter A. Kiener; Bahija Jallal

Background Psoriasis is an immune-mediated disease characterized by aberrant epidermal differentiation, surface scale formation, and marked cutaneous inflammation. To better understand the pathogenesis of this disease and identify potential mediators, we used whole genome array analysis to profile paired lesional and nonlesional psoriatic skin and skin from healthy donors. Methodology/Principal Findings We observed robust overexpression of type I interferon (IFN)–inducible genes and genomic signatures that indicate T cell and dendritic cell infiltration in lesional skin. Up-regulation of mRNAs for IFN-α subtypes was observed in lesional skin compared with nonlesional skin. Enrichment of mature dendritic cells and 2 type I IFN–inducible proteins, STAT1 and ISG15, were observed in the majority of lesional skin biopsies. Concordant overexpression of IFN-γ and TNF-α–inducible gene signatures occurred at the same disease sites. Conclusions/Significance Up-regulation of TNF-α and elevation of the TNF-α–inducible gene signature in lesional skin underscore the importance of this cytokine in psoriasis; these data describe a molecular basis for the therapeutic activity of anti–TNF-α agents. Furthermore, these findings implicate type I IFNs in the pathogenesis of psoriasis. Consistent and significant up-regulation of type I IFNs and their associated gene signatures in psoriatic skin suggest that type I IFNs may be potential therapeutic targets in psoriasis treatment.


Annals of the Rheumatic Diseases | 2011

Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway

Brandon W. Higgs; Zheng Liu; Barbara White; Wei Zhu; Wendy I. White; Chris Morehouse; Philip Brohawn; Peter A. Kiener; Laura Richman; David Fiorentino; Steven A. Greenberg; Bahija Jallal; Yihong Yao

Objective To characterise activation of the type I interferon (IFN) pathway in patients with systemic lupus erythematosus (SLE), dermatomyositis (DM), polymyositis (PM), rheumatoid arthritis (RA) and systemic scleroderma (SSc) and to evaluate the potential to develop a molecular diagnostic tool from the peripheral blood that reflects this activation in disease-affected tissues. Methods Overexpressed transcripts were identified in the whole blood (WB) of 262 patients with SLE, 44 with DM, 33 with PM, 28 with SSc and 89 with RA and compared with 24 healthy subjects using Affymetrix microarrays. A five gene type I IFN signature was assessed in these subjects to identify subpopulations showing both activation and concordance of the type I IFN pathway in the peripheral blood and disease-affected tissues of each disease and to correlate activation of this pathway in the WB with clinical measurements. Results A common set of 36 type I IFN inducible transcripts were identified among the most overexpressed in the WB of all subjects. Significant activation of the type I IFN pathway in subgroups of each of the five diseases studied was observed. Baseline disease activity measurements correlated with a type I IFN gene signature in the WB of subjects with SLE, PM and SSc, as did various serum autoantibody levels in subjects with SLE and DM. This signature was also well correlated between disease-affected tissue and WB in subjects with SLE, DM, PM and SSc. Conclusions The results indicate that the type I IFN pathway is activated in patient subsets of five rheumatic diseases and suggest that these subsets may benefit from anti-IFN therapy.


Annals of Neurology | 2010

Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophy.

Mohammad Salajegheh; Sek Won Kong; Jack L. Pinkus; Ronan J. Walsh; Anne Liao; Remedios Nazareno; Anthony A. Amato; Bryan Krastins; Chris Morehouse; Brandon W. Higgs; Bahija Jallal; Yihong Yao; David Sarracino; Kenneth C. Parker; Steven A. Greenberg

We investigated interferon‐stimulated gene 15 (ISG15), a poorly understood ubiquitin‐like modifier, and its enzymatic pathway in dermatomyositis (DM), an autoimmune disease primarily involving muscle and skin.


Human Genomics and Proteomics | 2009

Development of Potential Pharmacodynamic and Diagnostic Markers for Anti-IFN-α Monoclonal Antibody Trials in Systemic Lupus Erythematosus.

Yihong Yao; Brandon W. Higgs; Chris Morehouse; Melissa de los Reyes; Wendy Trigona; Philip Brohawn; Wendy I. White; Jianliang Zhang; Barbara White; Anthony J. Coyle; Peter A. Kiener; Bahija Jallal

To identify potential pharmacodynamic biomarkers to guide dose selection in clinical trials using anti-interferon-alpha (IFN-α) monoclonal antibody (mAb) therapy for systemic lupus erythematosus (SLE), we used an Affymetrix human genome array platform and identified 110 IFN-α/β-inducible transcripts significantly upregulated in whole blood (WB) of 41 SLE patients. The overexpression of these genes was confirmed prospectively in 54 additional SLE patients and allowed for the categorization of the SLE patients into groups of high, moderate, and weak overexpressers of IFN-α/β-inducible genes. This approach could potentially allow for an accurate assessment of drug target neutralization in early trials of anti-IFN-α mAb therapy for SLE. Furthermore, ex vivo stimulation of healthy donor peripheral blood mononuclear cells with SLE patient serum and subsequent neutralization with anti-IFN-α mAb or anti-IFN-α receptor mAb showed that anti-IFN-α mAb has comparable effects of neutralizing the overexpression of type I IFN-inducible genes as that of anti-IFNAR mAb. These results suggest that IFN-α, and not other members of type I IFN family in SLE patients, is mainly responsible for the induction of type I IFN-inducible genes in WB of SLE patients. Taken together, these data strengthen the view of IFN-α as a therapeutic target for SLE.


Annals of the Rheumatic Diseases | 2014

A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-α monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients

Brandon W. Higgs; Wei Zhu; Chris Morehouse; Wendy I. White; Philip Brohawn; Xiang Guo; Marlon Rebelatto; Chenxiong Le; Anthony A. Amato; David Fiorentino; Steven A. Greenberg; Jorn Drappa; Laura Richman; Warren Greth; Bahija Jallal; Yihong Yao

Objective To assess the pharmacodynamic effects of sifalimumab, an investigational anti-IFN-α monoclonal antibody, in the blood and muscle of adult dermatomyositis and polymyositis patients by measuring neutralisation of a type I IFN gene signature (IFNGS) following drug exposure. Methods A phase 1b randomised, double-blinded, placebo controlled, dose-escalation, multicentre clinical trial was conducted to evaluate sifalimumab in dermatomyositis or polymyositis patients. Blood and muscle biopsies were procured before and after sifalimumab administration. Selected proteins were measured in patient serum with a multiplex assay, in the muscle using immunohistochemistry, and transcripts were profiled with microarray and quantitative reverse transcriptase PCR assays. A 13-gene IFNGS was used to measure the pharmacological effect of sifalimumab. Results The IFNGS was suppressed by a median of 53–66% across three time points (days 28, 56 and 98) in blood (p=0.019) and 47% at day 98 in muscle specimens post-sifalimumab administration. Both IFN-inducible transcripts and proteins were prevalently suppressed following sifalimumab administration. Patients with 15% or greater improvement from baseline manual muscle testing scores showed greater neutralisation of the IFNGS than patients with less than 15% improvement in both blood and muscle. Pathway/functional analysis of transcripts suppressed by sifalimumab showed that leucocyte infiltration, antigen presentation and immunoglobulin categories were most suppressed by sifalimumab and highly correlated with IFNGS neutralisation in muscle. Conclusions Sifalimumab suppressed the IFNGS in blood and muscle tissue in myositis patients, consistent with this molecules mechanism of action with a positive correlative trend between target neutralisation and clinical improvement. These observations will require confirmation in a larger trial powered to evaluate efficacy.


Stem Cells Translational Medicine | 2013

EZH2 Is Required for Breast and Pancreatic Cancer Stem Cell Maintenance and Can Be Used as a Functional Cancer Stem Cell Reporter

Lilian E. van Vlerken; Christine Kiefer; Chris Morehouse; Ying Li; Christopher Groves; Susan Wilson; Yihong Yao; Robert E. Hollingsworth; Elaine M. Hurt

Although cancer is largely seen as a disease stemming from genetic mutations, evidence has implicated epigenetic regulation of gene expression as a driving force for tumorigenesis. Epigenetic regulation by histone modification, specifically through polycomb group (PcG) proteins such as EZH2 and BMI‐1, is a major driver in stem cell biology and is found to be correlated with poor prognosis in many tumor types. This suggests a role for PcG proteins in cancer stem cells (CSCs). We hypothesized that epigenetic modification by EZH2, specifically, helps maintain the CSC phenotype and that in turn this epigenetic modifier can be used as a reporter for CSC activity in an in vitro high‐throughput screening assay. CSCs isolated from pancreatic and breast cancer lines had elevated EZH2 levels over non‐CSCs. Moreover, EZH2 knockdown by RNA interference significantly reduced the frequency of CSCs in all models tested, confirming the role of EZH2 in maintenance of the CSC population. Interestingly, genes affected by EZH2 loss, and therefore CSC loss, were inversely correlated with genes identified by CSC enrichment, further supporting the function of EZH2 CSC regulation. We translated these results into a novel assay whereby elevated EZH2 staining was used as a reporter for CSCs. Data confirmed that this assay could effectively measure changes, both inhibition and enrichment, in the CSC population, providing a novel approach to look at CSC activity. This assay provides a unique, rapid way to facilitate CSC screening across several tumor types to aid in further CSC‐related research.


Vaccine | 2010

A whole genome transcriptional analysis of the early immune response induced by live attenuated and inactivated influenza vaccines in young children.

Wei Zhu; Brandon W. Higgs; Chris Morehouse; Katie Streicher; Christopher S. Ambrose; Jennifer Woo; George Kemble; Bahija Jallal; Yihong Yao

The protective mechanisms of influenza vaccines in young children are not completely understood. A phase 2 clinical study was conducted in 85 children 12-35 months of age to describe and compare the immune responses to live attenuated influenza vaccine (LAIV) with trivalent inactivated influenza vaccine (TIV). To better understand the biology of vaccine effects, oligonucleotide microarrays were employed to measure the genome-wide changes in transcript profiles in whole blood at approximately 7 days after 1 dose of LAIV or TIV. Of the total 265 differentially expressed genes identified in this study, 6 clusters of genes were identified to be tightly coexpressed, many of which are likely modulated by cytokines including type 1 interferons (IFNs) and granulocyte-macrophage colony-stimulating factor. Additional functional analyses revealed that the type 1 IFN pathway and cell cycle regulation-related genes are enriched in the 6 coexpressed gene sets. Promoter characterization of these coexpressed genes also supported this conclusion. Moreover, it is suggested that the IFN-stimulated response element is likely to be a potential bidirectional promoter, and the CCAAT/enhancer-binding protein might cooperate with the E2F transcription factor family in the regulation of the cell cycle in the early immune response induced by the influenza vaccine. Overall, our study clearly indicates that the expression profile changes induced by LAIV are significantly different from those induced by TIV. These results suggest that the pattern of overexpression of type 1 IFN-stimulated genes can potentially be used as a biomarker to identify the early vaccination response of LAIV and may also explain, to a certain extent, previous clinical study observations of LAIV-induced protection against influenza-like illness in the first 2 weeks after administration.


Muscle & Nerve | 2010

Permissive environment for B-cell maturation in myositis muscle in the absence of B-cell follicles

Mohammad Salajegheh; Jack L. Pinkus; Anthony A. Amato; Chris Morehouse; Bahija Jallal; Yihong Yao; Steven A. Greenberg

Myositis muscle contains antigen‐matured B‐cells and plasma cells. Myositis muscle biopsy specimens were examined for nodular collections of T‐cells, B‐cells, myeloid dendritic cells, plasma cells, and follicular dendritic cells. Immunoglobulin and B‐cell–activating factor (BAFF) transcripts were quantitated. Laser‐capture microdissection was used to isolate single plasma cells, and their immunoglobulin transcripts were sequenced. Dense inflammatory infiltrates contained histological elements of ectopic lymphoid tissue but not B‐cell follicles. Immunoglobulin transcript sequence analysis demonstrated spatially distributed, clonally related B‐cells and plasma cells, suggesting local maturation of B‐cells into plasma cells in myositis muscle. Regions of dense cellular infiltrates in myositis muscle are sometimes areas of B‐cell maturation into antibody‐producing plasma cells. An atypical lymphoid histology, lacking concentrated collections of germinal‐center–like B‐cell follicles, is capable of antigen‐stimulated clonal maturation of antibody‐producing plasma cells. Muscle Nerve, 2010


PLOS ONE | 2011

Altered expression of insulin receptor isoforms in breast cancer.

Jiaqi Huang; Chris Morehouse; Katie Streicher; Brandon W. Higgs; Jin Gao; Meggan Czapiga; Anmarie Boutrin; Wei Zhu; Philip Brohawn; Yong Chang; Jaye Viner; Theresa M. LaVallee; Laura Richman; Bahija Jallal; Yihong Yao

Purpose Insulin-like growth factor (IGF) signaling through human insulin receptor isoform A (IR-A) contributes to tumorigenesis and intrinsic resistance to anti-IGF1R therapy. In the present study, we (a) developed quantitative TaqMan real time-PCR-based assays (qRT-PCR) to measure human insulin receptor isoforms with high specificity, (b) evaluated isoform expression levels in molecularly-defined breast cancer subtypes, and (c) identified the IR-A:IR-B mRNA ratio as a potential biomarker guiding patient stratification for anti-IGF therapies. Experimental Design mRNA expression levels of IR-A and IR-B were measured in 42 primary breast cancers and 19 matched adjacent normal tissues with TaqMan qRT-PCR assays. The results were further confirmed in 165 breast cancers. The tumor samples were profiled using whole genome microarrays and subsequently subtyped using the PAM50 breast cancer gene signature. The relationship between the IR-A:IR-B ratio and cancer subtype, as well as markers of proliferation were characterized. Results The mRNA expression levels of IR-A in the breast tumors were similar to those observed in the adjacent normal tissues, while the mRNA levels of IR-B were significantly decreased in tumors. The IR-A:IR-B ratio was significantly higher in luminal B breast cancer than in luminal A. Strong concordance between the IR-A:IR-B ratio and the composite Oncotype DX proliferation score was observed for stratifying the latter two breast cancer subtypes. Conclusions The reduction in IR-B expression is the key to the altered IR-A:IR-B ratio observed in breast cancer. The IR-A:IR-B ratio may have biomarker utility in guiding a patient stratification strategy for an anti-IGF therapeutic.


PLOS ONE | 2012

The CEA/CD3-Bispecific Antibody MEDI-565 (MT111) Binds a Nonlinear Epitope in the Full-Length but Not a Short Splice Variant of CEA

Li Peng; Michael Oberst; Jiaqi Huang; Philip Brohawn; Chris Morehouse; Kristen Lekstrom; Patrick A. Baeuerle; Herren Wu; Yihong Yao; Steven Coats; William F. Dall’Acqua; Melissa Damschroder; Scott A. Hammond

MEDI-565 (also known as MT111) is a bispecific T-cell engager (BiTE®) antibody in development for the treatment of patients with cancers expressing carcinoembryonic antigen (CEA). MEDI-565 binds CEA on cancer cells and CD3 on T cells to induce T-cell mediated killing of cancer cells. To understand the molecular basis of human CEA recognition by MEDI-565 and how polymorphisms and spliced forms of CEA may affect MEDI-565 activity, we mapped the epitope of MEDI-565 on CEA using mutagenesis and homology modeling approaches. We found that MEDI-565 recognized a conformational epitope in the A2 domain comprised of amino acids 326–349 and 388–410, with critical residues F326, T328, N333, V388, G389, P390, E392, I408, and N410. Two non-synonymous single-nucleotide polymorphisms (SNPs) (rs10407503, rs7249230) were identified in the epitope region, but they are found at low homozygosity rates. Searching the National Center for Biotechnology Information GenBank® database, we further identified a single, previously uncharacterized mRNA splice variant of CEA that lacks a portion of the N-terminal domain, the A1 and B1 domains, and a large portion of the A2 domain. Real-time quantitative polymerase chain reaction analysis of multiple cancers showed widespread expression of full-length CEA in these tumors, with less frequent but concordant expression of the CEA splice variant. Because the epitope was largely absent from the CEA splice variant, MEDI-565 did not bind or mediate T-cell killing of cells solely expressing this form of CEA. In addition, the splice variant did not interfere with MEDI-565 binding or activity when co-expressed with full-length CEA. Thus MEDI-565 may broadly target CEA-positive tumors without regard for expression of the short splice variant of CEA. Together our data suggest that MEDI-565 activity will neither be impacted by SNPs nor by a splice variant of CEA.

Collaboration


Dive into the Chris Morehouse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge