Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Newbold is active.

Publication


Featured researches published by Chris Newbold.


Nature | 2002

Genome sequence of the human malaria parasite Plasmodium falciparum

Malcolm J. Gardner; Neil Hall; Eula Fung; Owen White; Matthew Berriman; Richard W. Hyman; Jane M. Carlton; Arnab Pain; Karen E. Nelson; Sharen Bowman; Ian T. Paulsen; Keith D. James; Jonathan A. Eisen; Kim Rutherford; Alister Craig; Sue Kyes; Man Suen Chan; Vishvanath Nene; Shamira Shallom; Bernard B. Suh; Jeremy Peterson; Sam Angiuoli; Mihaela Pertea; Jonathan E. Allen; Jeremy D. Selengut; Daniel H. Haft; Michael W. Mather; Akhil B. Vaidya; David M. A. Martin; Alan H. Fairlamb

The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.


Cell | 1995

Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes

Joseph D. Smith; Chetan Chitnis; Alistar G. Craig; David J. Roberts; Diana E. Hudson-Taylor; David S. Peterson; Robert Pinches; Chris Newbold; Louis H. Miller

Plasmodium falciparum expresses on the host erythrocyte surface clonally variant antigens and ligands that mediate adherence to endothelial receptors. Both are central to pathogenesis, since they allow chronicity of infection and lead to concentration of infected erythrocytes in cerebral vessels. Here we show that expression of variant antigenic determinants is correlated with expression of individual members of a large, multigene family named var. Each var gene contains copies of a motif that has been previously shown to bind diverse host receptors; expression of a specific var gene correlated with binding to ICAM-1. Thus, our findings are consistent with the involvement of var genes in antigenic variation and binding to endothelium.


The Lancet | 1997

Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa

Robert W. Snow; J. Omumbo; Brett Lowe; Catherine S. Molyneux; Jacktone-O Obiero; Ayo Palmer; Martin Weber; Margaret Pinder; Bernard L. Nahlen; Charles O. Obonyo; Chris Newbold; Sunetra Gupta; Kevin Marsh

BACKGROUND Malaria remains a major cause of mortality and morbidity in Africa. Many approaches to malaria control involve reducing the chances of infection but little is known of the relations between parasite exposure and the development of effective clinical immunity so the long-term effect of such approaches to control on the pattern and frequency of malaria cannot be predicted. METHODS We have prospectively recorded paediatric admissions with severe malaria over three to five years from five discrete communities in The Gambia and Kenya. Demographic analysis of the communities exposed to disease risk allowed the estimation of age-specific rates for severe malaria. Within each community the exposure to Plasmodium falciparum infection was determined through repeated parasitological and serological surveys among children and infants. We used acute respiratory-tract infections (ARI) as a comparison. FINDINGS 3556 malaria admissions were recorded for the five sites. Marked differences were observed in age, clinical spectrum and rates of severe malaria between the five sites. Paradoxically, the risks of severe disease in childhood were lowest among populations with the highest transmission intensities, and the highest disease risks were observed among populations exposed to low-to-moderate intensities of transmission. For severe malaria, for example, admission rates (per 1000 per year) for children up to their 10th birthday were estimated as 3.9, 25.8, 25.9, 16.7, and 18.0 in the five communities; the forces of infection estimated for those communities (new infections per infant per month) were 0.001, 0.034, 0.050, 0.093, and 0.176, respectively. Similar trends were noted for cerebral malaria and for severe malaria anaemia but not for ARI. Mean age of disease decreased with increasing transmission intensity. INTERPRETATION We propose that a critical determinant of life-time disease risk is the ability to develop clinical immunity early in life during a period when other protective mechanisms may operate. In highly endemic areas measures which reduce parasite transmission, and thus immunity, may lead to a change in both the clinical spectrum of severe disease and the overall burden of severe malaria morbidity.


The Lancet | 1999

Averting a malaria disaster

Nicholas J. White; François Nosten; Sornchai Looareesuwan; William M. Watkins; Kevin Marsh; Robert W. Snow; Gilbert Kokwaro; John H. Ouma; Tran Tinh Hien; Malcolm E. Molyneux; Terrie E. Taylor; Chris Newbold; Tk Ruebush; M Danis; Brian Greenwood; Roy M. Anderson; Piero Olliaro

Estimates for the annual mortality from malaria range from 0·5 to 2·5 million deaths. The burden of this enormous toll, and the concomitant morbidity, is borne by the world’s poorest countries. Malaria morbidity and mortality have been held in check by the widespread availability of cheap and effective antimalarial drugs. The loss of these drugs to resistance may represent the single most important threat to the health of people in tropical countries. Chloroquine has been the mainstay of antimalarial drug treatment for the past 40 years, but resistance is now widespread and few countries are u n a f f e c t e d . 1 Pyrimethamine-sulphadoxine (PSD) is usually deployed as a successor to chloroquine. Both these antimalarials cost less than US


Nature | 1997

P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1

Rowe Ja; Joann M. Moulds; Chris Newbold; Louis H. Miller

0.20 per adult treatment course, but the drugs required to treat multidrug-resistant falciparum malaria (quinine, mefloquine, halofantrine) are over ten times more expensive and cannot be afforded by most tropical countries— especially those in Africa, where it is estimated that more than 90% of the world’s malaria deaths occur. Resistance to chloroquine is widespread across Africa and resistance to PSD is increasing. 2 A health calamity looms within the next few years. 3 As treatments lose their effectiveness, morbidity and mortality from malaria will inevitably continue to rise. Can this disaster be prevented? Can we really “roll back malaria”, as the new Director-General of WHO has demanded? 4


Nature Medicine | 1999

IMMUNITY TO NON-CEREBRAL SEVERE MALARIA IS ACQUIRED AFTER ONE OR TWO INFECTIONS

Sunetra Gupta; Robert W. Snow; Christl A. Donnelly; Kevin Marsh; Chris Newbold

The factors determining disease severity in malaria are complex and include host polymorphisms, acquired immunity and parasite virulence. Studies in Africa have shown that severe malaria is associated with the ability of erythrocytes infected with the parasite Plasmodium falciparum to bind uninfected erythrocytes and form rosettes. The molecular basis of rosetting is not well understood, although a group of low-molecular-mass proteins called rosettins have been described as potential parasite ligands. Infected erythrocytes also bind to endothelial cells, and this interaction is mediated by the parasite-derived variant erythrocyte membrane protein PfEMP1 (refs 7, 8), which is encoded by the var gene family. Here we report that the parasite ligand for rosetting in a P. falciparum clone is PfEMP1, encoded by a specific var gene. We also report that complement-receptor 1 (CR1) on erythrocytes plays a role in the formation of rosettes and that erythrocytes with a common African CR1 polymorphism (Sl(a−)) have reduced adhesion to the domain of PfEMP1 that binds normal erythrocytes. Thus we describe a new adhesive function for PfEMP1 and raise the possibility that CR1 polymorphisms in Africans that influence the interaction between erythrocytes and PfEMP1 may protect against severe malaria.


Nature | 1988

A highly conserved amino-acid sequence in thrombospondin, properdin and in proteins from sporozoites and blood stages of a human malaria parasite

Kathryn J. H. Robson; Jennifer R. Hall; M.W. Jennings; T. J. R. Harris; Kevin Marsh; Chris Newbold; Valerie E. Tate; D. J. Weatherall

In areas of stable transmission, clinical immunity to mild malaria is acquired slowly, so it is not usually effective until early adolescence. Life-threatening disease is, however, restricted to a much younger age group, indicating that resistance to the severe clinical consequences of infection is acquired more quickly. Understanding how rapidly immunity develops to severe malaria is essential, as severe malaria should be the primary target of intervention strategies, and predicting the result of interventions that reduce host exposure will require consideration of these dynamics. Severe disease in childhood is less frequent in areas where transmission is the greatest. One explanation for this is that infants experience increased exposure to infection while they are protected from disease, possibly by maternal antibody. They therefore emerge from this period of clinical protection with considerably more immunity than those who experience lower transmission intensities. Here we use this data, assuming a period of clinical protection, to estimate the number of prior infections needed to reduce the risk of severe disease to negligible levels. Contrary to expectations, one or two successful infective bites seem to be all that is necessary across a broad range of transmission intensities.


Cell | 2008

Exported Proteins Required for Virulence and Rigidity of Plasmodium falciparum-Infected Human Erythrocytes

Alexander G. Maier; Melanie Rug; Matthew T. O'Neill; Monica Brown; Srabasti J. Chakravorty; Tadge Szestak; Joanne M. Chesson; Yang Wu; Katie R. Hughes; Ross L. Coppel; Chris Newbold; James G. Beeson; Alister Craig; Brendan S. Crabb; Alan F. Cowman

As a consequence of gene cloning and DNA sequencing several gene families are emerging in the field of cell–cell recognition. These include immunoglobulins, integrins, certain extracellular glycoproteins1 and a family of functionally unrelated proteins which include factor B2. We report here the cloning and sequencing of a gene from Plasmodium falciparum, coding for a protein we call thrombospondin related anonymous protein (TRAP), which shares certain sequence motifs common to other well-characterized proteins. The most significant homology is based around the sequence Trp-Ser-Pro-Cys-Ser-Val-Thr-Cys-Gly (WSPCSVTCG), present in three copies in region I of thrombospondin (TSP)3, six copies in properdin4 (P) and one copy in all the circumsporozoite (CS) proteins5–10 sequenced so far. TRAP also shares with certain extracellular glycoproteins, including TSP, the cell-recognition signal Arg-Gly-Asp (RGD)11, which has been shown to be crucial in the interaction of several extracellular glycoproteins with members of the integrin superfamily. Unlike the CS protein, TRAP is expressed during the erythrocytic stage of the parasite life cycle.


Nature | 1999

The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum.

Sharen Bowman; D. Lawson; D. Basham; D. Brown; Tracey Chillingworth; Carol Churcher; Alister G. Craig; Robert Davies; K. Devlin; Theresa Feltwell; S. Gentles; R. Gwilliam; N. Hamlin; David J. Harris; S. Holroyd; T. Hornsby; Paul Horrocks; Kay Jagels; B. Jassal; S. Kyes; J. McLean; Sharon Moule; Karen Mungall; Lee Murphy; Karen Oliver; Michael A. Quail; Marie-Adele Rajandream; Simon Rutter; J. Skelton; R. Squares

Summary A major part of virulence for Plasmodium falciparum malaria infection, the most lethal parasitic disease of humans, results from increased rigidity and adhesiveness of infected host red cells. These changes are caused by parasite proteins exported to the erythrocyte using novel trafficking machinery assembled in the host cell. To understand these unique modifications, we used a large-scale gene knockout strategy combined with functional screens to identify proteins exported into parasite-infected erythrocytes and involved in remodeling these cells. Eight genes were identified encoding proteins required for export of the parasite adhesin PfEMP1 and assembly of knobs that function as physical platforms to anchor the adhesin. Additionally, we show that multiple proteins play a role in generating increased rigidity of infected erythrocytes. Collectively these proteins function as a pathogen secretion system, similar to bacteria and may provide targets for antivirulence based therapies to a disease responsible for millions of deaths annually.


Nature | 2008

The genome of the simian and human malaria parasite Plasmodium knowlesi.

Arnab Pain; Ulrike Böhme; Andrew Berry; Karen Mungall; Robert D. Finn; Andrew P. Jackson; T. Mourier; J. Mistry; E. M. Pasini; Martin Aslett; S. Balasubrammaniam; Karsten M. Borgwardt; Karen Brooks; Celine Carret; Tim Carver; Inna Cherevach; Tracey Chillingworth; Taane G. Clark; M. R. Galinski; Neil Hall; D. Harper; David Harris; Heidi Hauser; A. Ivens; C. S. Janssen; Thomas M. Keane; N. Larke; S. Lapp; M. Marti; S. Moule

Analysis of Plasmodium falciparum chromosome 3, and comparison with chromosome 2, highlights novel features of chromosome organization and gene structure. The sub-telomeric regions of chromosome 3 show a conserved order of features, including repetitive DNA sequences, members of multigene families involved in pathogenesis and antigenic variation, a number of conserved pseudogenes, and several genes of unknown function. A putative centromere has been identified that has a core region of about 2 kilobases with an extremely high (adenine + thymidine) composition and arrays of tandem repeats. We have predicted 215 protein-coding genes and two transfer RNA genes in the 1,060,106-base-pair chromosome sequence. The predicted protein-coding genes can be divided into three main classes: 52.6% are not spliced, 45.1% have a large exon with short additional 5′ or 3′ exons, and 2.3% have a multiple exon structure more typical of higher eukaryotes.

Collaboration


Dive into the Chris Newbold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Berriman

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Sue Kyes

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alister Craig

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Kyes

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge