Chris Pickering
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chris Pickering.
Brain Research | 2012
Susanne Jonsson; Julia Morud; Chris Pickering; Louise Adermark; Mia Ericson; Bo Söderpalm
Glycine receptors (GlyRs) are pentameric membrane proteins in the form of either α-homomers or α-β heteromers. Four out of five subunits; α1-3 and β, have been found in the mammalian brain. Early studies investigating subunit composition and expression patterns of this receptor have proposed a developmental switch from α2 homomers to α1β heteromers as the CNS matures, a conclusion primarily based on results from the spinal cord. However, our previous results indicate that this might not apply to e.g. the forebrain regions. Here we examined alterations in GlyR expression caused by developmental changes in selected brain areas, focusing on reward-related regions. Animals of several ages (P2, P21 and P60) were included to examine potential changes over time. In accordance with previous reports, a switch in expression was observed in the spinal cord. However, the present results indicate that a decrease in α2 subunit expression is not replaced by α1 subunit expression since the generally low levels, and modest increases, of α1 could hardly replace the reduction in α2-mRNA. Instead mRNA measurements indicate that α2 continues to be the dominating α-subunit also in adult animals, usually in combination with high and stable levels of β-subunit expression. This indicates that alterations in GlyR subunit expression are not simply a maturation effect common for the entire CNS, but rather a unique pattern of transition depending on the region at hand.
Brain Research | 2009
Sadia Oreland; Chris Pickering; Camilla Göktürk; Lars Oreland; Lotta Arborelius; Ingrid Nylander
Early environment is a known determinant for individual differences in vulnerability for adult psychopathology, e.g., ethanol addiction. One underlying mechanism could be dysfunction in serotonergic neurotransmission. This study focused on the methodological considerations regarding an animal model for studying effects of early environment, maternal separation (MS), using two different paradigms. Age- and sex-specific effects on brain stem 5-hydroxytryptamine (5-HT) transporter and receptors were examined. Male and female rat pups were assigned to either litter-wise MS for 15 or 360 min (MS15l or MS360l) or individual MS for 15 or 360 min (MS15i or MS360i) daily during postnatal days 1-21. Normal animal facility reared rats were used as controls. Analyses were performed in young and adult rats. As compared to the other males, MS15l males had lower 5-HT(1A) and 5-HT(2C) receptor mRNA expression at both ages, lower 5-HT(2A) receptor mRNA when young and lower 5-HTT mRNA expression when adult. In contrast, adult MS15l females had higher 5-HT(2C) receptor mRNA expression than other female rats. The strong impact of MS15l on 5-HT-related genes was either transient or persistent depending on sex and fewer effects on gene expression were observed in females than in males. This study shows the importance of tactile contact for the consequences of short but not prolonged MS, as evidenced by major differences between MS15l and MS15i. The results suggest that MS15i is less suitable than MS15l to simulate a protective environment in studies of, for instance, ethanol addiction processes.
Neuroscience | 2007
Tiago Moreira; Gvido Cebers; Chris Pickering; Claes-Göran Östenson; Suad Efendic; Sture Liljequist
Hyperglycemia has been shown to worsen the outcome of brain ischemia in several animal models but few experimental studies have investigated impairments in cognition induced by ischemic brain lesions in hyperglycemic animals. The Goto-Kakizaki (GK) rat naturally develops type 2 diabetes characterized by mild hyperglycemia and insulin resistance. We hypothesized that GK rats would display more severe cerebral damage due to hyperglycemia-aggravated brain injury and, accordingly, more severe cognitive impairments. In this study, recovery of motor and cognitive functions of GK and healthy Wistar rats was examined following extradural compression (EC) of the sensorimotor cortex. For this purpose, tests of vestibulomotor function (beam-walking) and combined tests of motor function and learning (locomotor activity from day (D) 1 to D5, operant lever-pressing from D14 to D25) were used. EC consistently reduced cerebral blood flow in both strains. Anesthesia-challenge and EC resulted in pronounced hyperglycemia in GK but not in Wistar rats. Lower beam-walking scores, increased locomotor activity, impairments in long-term habituation and learning of operant lever-pressing were more pronounced and observed at later time-points in GK rats. Fluoro-Jade, a marker of irreversible neuronal degeneration, revealed consistent degeneration in the ipsilateral cortex, hippocampus and thalamus at 2, 7 and 14 days post-compression. The amount of degeneration in these structures was considerably higher in GK rats. Thus, GK rats exhibited marked hyperglycemia during EC, as well as longer-lasting behavioral deficits and increased neurodegeneration during recovery. The GK rat is thus an attractive model for neuropathologic and cognitive studies after ischemic brain injury in hyperglycemic rats.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2007
Chris Pickering; Lotta Avesson; Jonas Lindblom; Sture Liljequist; Helgi B. Schiöth
About half of the risk to develop alcoholism is related to genetic background and it is well known that alcohol consumption is highly individualized. In this study, we investigated how individual alcohol consumption behaviour in Wistar rats correlated with mRNA expression of 20 genes in the prefrontal cortex, hippocampus and amygdala. We found that the long-term alcohol consumption of an individual could be estimated by the mean of its consumption on Day 2 and 3. This short exposure minimized changes in gene expression induced by alcohol itself. We found a positive correlation in the prefrontal cortex of GABA(A) alpha5 (r=0.96), GABA(B1) (r=0.96), AMPA GluR1 (r=0.93), 5-HT(3A) (r=0.93) and the alpha adrenoceptors (alpha(1A)r=1.00, alpha(1B)r=0.93, alpha(2A)r=0.93) with consumption. In the hippocampus, we found negative correlations with the NMDA NR2A subunit (r=-0.86), the alpha(1A) adrenoceptor (r=-0.89) and the glucocorticoid receptor (r=-0.86). Finally, in the amygdala there was a negative correlation to NMDA NR2A (r= -0.79) and a positive correlation with serotonin 5-HT(2C) (r=0.79). In conclusion, we have used qPCR to identify specific genes in the brain that correlated to alcohol self-administration of an individual animal. This study suggests that alcohol consumption in the early stages of acquisition depends on the genetic background of the individual and that the prefrontal cortex is particularly important in this behaviour.
International Journal of Developmental Neuroscience | 2010
Sadia Oreland; Ingrid Nylander; Chris Pickering
Maternal separation (MS) early in life affects many aspects of development and we have previously observed significant decreases in NMDA and AMPA receptor and elevated glutamate transporter expression in the hippocampus of MS360 animals relative to MS15. We hypothesized that this disruption of the glutamatergic system in adult animals was a sign of a reduction in hippocampal neuronal number in 3‐week‐old animals. Male Wistar rat pups were separated litter‐wise for 15 min (MS15) or 360 min (MS360) from postnatal day 1 to 21. Conventional laboratory reared animals were also included. At postnatal day 22, brains were dissected and sliced on a cryostat. Immunohistochemistry labeled neurons (NeuN) and astrocytes (GFAP) and the number of neurons was quantified using the disector method and Cavalieri principle for stereology for the CA1, CA2, CA3 and dentate gyrus regions of the hippocampus. The volume of 4 regions did not differ across the 3 experimental groups. Numerical density of neurons, however, was significantly different in CA3 (one‐way ANOVA; p = 0.044) and the dentate gyrus (one‐way ANOVA; p < 0.0001) with post hoc differences MS360 vs. MS15. Finally, the total number of neurons was calculated and MS360 animals had significantly fewer neurons than MS15 animals in the dentate gyrus. Therefore, the maternal separation procedure affected development of the hippocampus directly at 3 weeks of age. The differences observed consequently place young MS360 animals in a vulnerable state for challenges later in life.
Pharmacology, Biochemistry and Behavior | 2015
Chris Pickering; Johan Alsiö; Julia Morud; Mia Ericson; Trevor W. Robbins; Bo Söderpalm
Cognitive impairments are observable in over half of cases with alcoholism, deficits in spatial working memory being particularly common. Previously we observed that rats make more alternation errors in a Y-maze test of spontaneous alternation behaviour/spatial working memory after 5-day intermittent ethanol. Here we used qPCR to quantify changes in gene expression accompanying this behavioural impairment. Male Wistar rats were treated with either saline or ethanol (1 or 2.5g/kg) for 5days followed by 2 drug-free days. Brains were dissected after Y-maze analysis and RNA was extracted from the medial prefrontal cortex, hippocampus and nucleus accumbens. Using the Qiagen GABA & Glutamate PCR array we measured changes in these two neurotransmitter systems. A dose of 1g/kg ethanol did not affect spontaneous alternation behaviour or any other behavioural variable. 2.5g/kg significantly decreased % correct alternations (p=0.028) without affecting total distance (p=0.54) and increased time in the choice area (p=0.023) at the Y-maze centre, indicating a possible impairment in decision-making. In the medial prefrontal cortex, 2.5g/kg ethanol decreased mRNA expression of brain-derived neurotrophic factor, NMDA NR2A subunit, mGluR8 receptor, Homer1, the glutamate transporters SLC1a1 and SLC1a6 and Srr. In the nucleus accumbens this dose did not affect mRNA expression of the dopamine D1 or D2 receptors but did upregulate the GABA transporter GAT-3. Even if only correlational, these data suggest that gene expression changes in the medial prefrontal cortex and associated cognitive impairment occur before adaptation of the dopaminergic system and, presumably, drug dependence.
BMC Neuroscience | 2008
Chris Pickering; Maria Hägglund; Joanna Szmydynger-Chodobska; Fernanda Marques; Joana Almeida Palha; Linn Waller; Adam Chodobski; Robert Fredriksson; Malin C. Lagerström; Helgi B. Schiöth
BackgroundGPR125 belongs to the family of Adhesion G protein-coupled receptors (GPCRs). A single copy of GPR125 was found in many vertebrate genomes. We also identified a Drosophila sequence, DmCG15744, which shares a common ancestor with the entire Group III of Adhesion GPCRs, and also contains Ig, LRR and HBD domains which were observed in mammalian GPR125.ResultsWe found specific expression of GPR125 in cells of the choroid plexus using in situ hybridization and protein-specific antibodies and combined in situ/immunohistochemistry co-localization using cytokeratin, a marker specific for epithelial cells. Induction of inflammation by LPS did not change GPR125 expression. However, GPR125 expression was transiently increased (almost 2-fold) at 4 h after traumatic brain injury (TBI) followed by a decrease (approximately 4-fold) from 2 days onwards in the choroid plexus as well as increased expression (2-fold) in the hippocampus that was delayed until 1 day after injury.ConclusionThese findings suggest that GPR125 plays a functional role in choroidal and hippocampal response to injury.
International Scholarly Research Notices | 2013
Chris Pickering; Mia Ericson; Bo Söderpalm
Phencyclidine (PCP) mimics many aspects of schizophrenia, yet the underlying mechanism of neurochemical adaptation for PCP is unknown. We therefore used proteomics to study changes in the medial prefrontal cortex in animals with PCP-induced behavioural deficits. Male Wistar rats were injected with saline or 5 mg/kg phencyclidine for 5 days followed by two days of washout. Spontaneous alternation behaviour was tested in a Y-maze and then proteins were extracted from the medial prefrontal cortex. 2D-DIGE analysis followed by spot picking and protein identification with mass spectrometry then provided a list of differentially expressed proteins. Treatment with 5 mg/kg phencyclidine decreased the percentage of correct alternations in the Y-maze compared to saline-treated controls. Proteomics analysis of the medial prefrontal cortex found upregulation of 6 proteins (synapsin-1, Dpysl3, Aco2, Fscn1, Tuba1c, and Mapk1) and downregulation of 11 (Bin1, Dpysl2, Sugt1, ApoE, Psme1, ERp29, Pgam1, Uchl1, Ndufv2, Pcmt1, and Vdac1). A trend to upregulation was observed for Gnb4 and Capza2, while downregulation trends were noted for alpha-enolase and Fh. Many of the hits in this study concur with recent postmortem data from schizophrenic patients and this further validates the use of phencyclidine in preclinical translational research.
Neuroscience Letters | 2009
Johan Alsiö; Chris Pickering; Erika Roman; Anna-Lena Hulting; Jonas Lindblom; Helgi B. Schiöth
Anxiety has been implicated in obesity and in the overconsumption of highly palatable foods such as those high in fat, sugar, or both. Also, the novelty-seeking trait has been associated with failure in weight-loss programs. The aim of this study was to investigate the associations of experimental anxiety and the self-administration of sucrose and high fat pellets in non-food deprived rats across different operant schedules. Male Wistar rats were subjected to the elevated plus-maze test (EPM) of anxiety-like behavior. The rats were tested for fixed ratio 5 (FR5) and progressive ratio (PR) operant responding for 50% sucrose, 95% sucrose, and high-fat pellets. PR active lever press response for 95% sucrose, but not the other pellet types, was correlated to % time spent on open arms (P=0.019) in the EPM. On the FR5 schedule, activity (closed arm entries) was correlated to the self-administration of 50% sucrose (P=0.027) and high-fat (P=0.002). This indicates an association of novelty-induced activity and self-administration of palatable food in sated rats, as well as a specific association of PR lever press response for 95% sucrose and low anxiety-like behavior. It has been argued that such active lever press response on PR may be interpreted as craving for the reinforcer; thus, our findings indicate an inverse relationship of experimental anxiety and craving for sucrose. This connection may have implications for human situations, since anxiety and novelty-seeking have been associated with obesity and failure in weight-loss programs.
Basic & Clinical Pharmacology & Toxicology | 2012
Joacim Götesson; Mia Ericson; Bo Söderpalm; Chris Pickering
Prolonged consumption of ethanol produces prefrontal cortex (PFC) dysfunction in patients, and this has been demonstrated using structural, physiological and psychological measurements. We therefore wanted to develop an animal model of PFC dysfunction to study whether this state changes sensitivity for ethanol or other behavioural/motivational measures. Adolescent Wistar rats were first screened in the novel object recognition task to establish a pre-treatment baseline measure of locomotor activity, anxiety-like behaviour and PFC function. Animals were divided into four treatment groups [saline, 5 mg/kg phencyclidine (PCP), 2.5g/kg ethanol, ethanol + PCP] and injected i.p. for 5 days followed by a 2-day washout. On the 8th day, animals were allowed to explore a Y-maze for 10 min. and spontaneous alternations were recorded using the ANY-maze tracking system. PCP, a classic drug used to induce PFC dysfunction in animals, did not significantly reduce the % correct alternations relative to the 70% level achieved by the saline group. Ethanol and the combination of Ethanol + PCP, however, significantly reduced alternations to approximately 30%. The combined dose was not additive in terms of Y-maze impairment, and these animals had less total distance travelled and greater time immobile relative to the other groups. We therefore concluded that injection of 2.5 g/kg ethanol for 5 days in Wistar rats produces a more substantial, consistent and valid PFC dysfunction than 5 mg/kg PCP.