Chris S. Rae
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chris S. Rae.
Infection and Immunity | 2011
John-Demian Sauer; Katia Sotelo-Troha; Jakob von Moltke; Kathryn M. Monroe; Chris S. Rae; Sky W. Brubaker; Mamoru Hyodo; Yoshihiro Hayakawa; Joshua J. Woodward; Daniel A. Portnoy; Russell E. Vance
ABSTRACT Type I interferons (IFNs) are central regulators of the innate and adaptive immune responses to viral and bacterial infections. Type I IFNs are induced upon cytosolic detection of microbial nucleic acids, including DNA, RNA, and the bacterial second messenger cyclic-di-GMP (c-di-GMP). In addition, a recent study demonstrated that the intracellular bacterial pathogen Listeria monocytogenes stimulates a type I IFN response due to cytosolic detection of bacterially secreted c-di-AMP. The transmembrane signaling adaptor Sting (Tmem173, Mita, Mpys, Eris) has recently been implicated in the induction of type I IFNs in response to cytosolic DNA and/or RNA. However, the role of Sting in response to purified cyclic dinucleotides or during in vivo L. monocytogenes infection has not been addressed. In order to identify genes important in the innate immune response, we have been conducting a forward genetic mutagenesis screen in C57BL/6 mice using the mutagen N-ethyl-N-nitrosourea (ENU). Here we describe a novel mutant mouse strain, Goldenticket (Gt), that fails to produce type I IFNs upon L. monocytogenes infection. By genetic mapping and complementation experiments, we found that Gt mice harbor a single nucleotide variant (T596A) of Sting that functions as a null allele and fails to produce detectable protein. Analysis of macrophages isolated from Gt mice revealed that Sting is absolutely required for the type I interferon response to both c-di-GMP and c-di-AMP. Additionally, Sting is required for the response to c-di-GMP and L. monocytogenes in vivo. Our results provide new functions for Sting in the innate interferon response to pathogens.
Nature | 2013
Paolo Manzanillo; Janelle S. Ayres; Robert O. Watson; Angela C. Collins; Gianne Souza; Chris S. Rae; David S. Schneider; Ken Nakamura; Michael U. Shiloh; Jeffery S. Cox
Ubiquitin-mediated targeting of intracellular bacteria to the autophagy pathway is a key innate defence mechanism against invading microbes, including the important human pathogen Mycobacterium tuberculosis. However, the ubiquitin ligases responsible for catalysing ubiquitin chains that surround intracellular bacteria are poorly understood. The parkin protein is a ubiquitin ligase with a well-established role in mitophagy, and mutations in the parkin gene (PARK2) lead to increased susceptibility to Parkinson’s disease. Surprisingly, genetic polymorphisms in the PARK2 regulatory region are also associated with increased susceptibility to intracellular bacterial pathogens in humans, including Mycobacterium leprae and Salmonella enterica serovar Typhi, but the function of parkin in immunity has remained unexplored. Here we show that parkin has a role in ubiquitin-mediated autophagy of M. tuberculosis. Both parkin-deficient mice and flies are sensitive to various intracellular bacterial infections, indicating parkin has a conserved role in metazoan innate defence. Moreover, our work reveals an unexpected functional link between mitophagy and infectious disease.
PLOS ONE | 2010
Nicole Meyer-Morse; Jennifer R. Robbins; Chris S. Rae; Sofia N. Mochegova; Michele S. Swanson; Zijiang Zhao; Herbert W. Virgin; Daniel A. Portnoy
Background Recent studies have suggested that autophagy is utilized by cells as a protective mechanism against Listeria monocytogenes infection. Methodology/Principal Findings However we find autophagy has no measurable role in vacuolar escape and intracellular growth in primary cultured bone marrow derived macrophages (BMDMs) deficient for autophagy (atg5−/−). Nevertheless, we provide evidence that the pore forming activity of the cholesterol-dependent cytolysin listeriolysin O (LLO) can induce autophagy subsequent to infection by L. monocytogenes. Infection of BMDMs with L. monocytogenes induced microtubule-associated protein light chain 3 (LC3) lipidation, consistent with autophagy activation, whereas a mutant lacking LLO did not. Infection of BMDMs that express LC3-GFP demonstrated that wild-type L. monocytogenes was encapsulated by LC3-GFP, consistent with autophagy activation, whereas a mutant lacking LLO was not. Bacillus subtilis expressing either LLO or a related cytolysin, perfringolysin O (PFO), induced LC3 colocalization and LC3 lipidation. Further, LLO-containing liposomes also recruited LC3-GFP, indicating that LLO was sufficient to induce targeted autophagy in the absence of infection. The role of autophagy had variable effects depending on the cell type assayed. In atg5−/− mouse embryonic fibroblasts, L. monocytogenes had a primary vacuole escape defect. However, the bacteria escaped and grew normally in atg5−/− BMDMs. Conclusions/Significance We propose that membrane damage, such as that caused by LLO, triggers bacterial-targeted autophagy, although autophagy does not affect the fate of wild-type intracellular L. monocytogenes in primary BMDMs.
Advances in Immunology | 2012
Chelsea E. Witte; Kristina A. Archer; Chris S. Rae; John-Demian Sauer; Joshua J. Woodward; Daniel A. Portnoy
Acquired cell-mediated immunity to Listeria monocytogenes is induced by infection with live, replicating bacteria that grow in the host cell cytosol, whereas killed bacteria, or those trapped in a phagosome, fail to induce protective immunity. In this chapter, we focus on how L. monocytogenes is sensed by the innate immune system, with the presumption that innate immunity affects the development of acquired immunity. Infection by L. monocytogenes induces three innate immune pathways: an MyD88-dependent pathway emanating from a phagosome leading to expression of inflammatory cytokines; a STING/IRF3-dependent pathway emanating from the cytosol leading to the expression of IFN-β and coregulated genes; and very low levels of a Caspase-1-dependent, AIM2-dependent inflammasome pathway resulting in proteolytic activation and secretion of IL-1β and IL-18 and pyroptotic cell death. Using a combination of genetics and biochemistry, we identified the listerial ligand that activates the STING/IRF3 pathway as secreted cyclic diadenosine monophosphate, a newly discovered conserved bacterial signaling molecule. We also identified L. monocytogenes mutants that caused robust inflammasome activation due to bacteriolysis in the cytosol, release of DNA, and activation of the AIM2 inflammasome. A strain was constructed that ectopically expressed and secreted a fusion protein containing Legionella pneumophila flagellin that robustly activated the Nlrc4-dependent inflammasome and was highly attenuated in mice, also in an Nlrc4-dependent manner. Surprisingly, this strain was a poor inducer of adaptive immunity, suggesting that inflammasome activation is not necessary to induce cell-mediated immunity and may even be detrimental under some conditions. To the best of our knowledge, no single innate immune pathway is necessary to mount a robust acquired immune response to L. monocytogenes infection.
PLOS Pathogens | 2011
Janelle Waite; Ingrid Leiner; Peter Lauer; Chris S. Rae; Gaetan Barbet; Huan Zheng; Daniel A. Portnoy; Eric G. Pamer; Michael L. Dustin
Host defense against the intracellular pathogen Listeria monocytogenes (Lm) requires innate and adaptive immunity. Here, we directly imaged immune cell dynamics at Lm foci established by dendritic cells in the subcapsular red pulp (scDC) using intravital microscopy. Blood borne Lm rapidly associated with scDC. Myelomonocytic cells (MMC) swarmed around non-motile scDC forming foci from which blood flow was excluded. The depletion of scDC after foci were established resulted in a 10-fold reduction in viable Lm, while graded depletion of MMC resulted in 30–1000 fold increase in viable Lm in foci with enhanced blood flow. Effector CD8+ T cells at sites of infection displayed a two-tiered reduction in motility with antigen independent and antigen dependent components, including stable interactions with infected and non-infected scDC. Thus, swarming MMC contribute to control of Lm prior to development of T cell immunity by direct killing and sequestration from blood flow, while scDC appear to promote Lm survival while preferentially interacting with CD8+ T cells in effector sites.
Infection and Immunity | 2011
Chris S. Rae; Aimee Geissler; Paul Adamson; Daniel A. Portnoy
ABSTRACT Listeria monocytogenes is a Gram-positive intracellular pathogen that is naturally resistant to lysozyme. Recently, it was shown that peptidoglycan modification by N-deacetylation or O-acetylation confers resistance to lysozyme in various Gram-positive bacteria, including L. monocytogenes. L. monocytogenes peptidoglycan is deacetylated by the action of N-acetylglucosamine deacetylase (Pgd) and acetylated by O-acetylmuramic acid transferase (Oat). We characterized Pgd−, Oat−, and double mutants to determine the specific role of L. monocytogenes peptidoglycan acetylation in conferring lysozyme sensitivity during infection of macrophages and mice. Pgd− and Pgd− Oat− double mutants were attenuated approximately 2 and 3.5 logs, respectively, in vivo. In bone-marrow derived macrophages, the mutants demonstrated intracellular growth defects and increased induction of cytokine transcriptional responses that emanated from a phagosome and the cytosol. Lysozyme-sensitive mutants underwent bacteriolysis in the macrophage cytosol, resulting in AIM2-dependent pyroptosis. Each of the in vitro phenotypes was rescued upon infection of LysM− macrophages. The addition of extracellular lysozyme to LysM− macrophages restored cytokine induction, host cell death, and L. monocytogenes growth inhibition. This surprising observation suggests that extracellular lysozyme can access the macrophage cytosol and act on intracellular lysozyme-sensitive bacteria.
Biochimica et Biophysica Acta | 2012
Alexander Golberg; Chris S. Rae; Boris Rubinsky
Genetically engineered cells with mutations of relevance to electroporation, cell membrane permeabilization by electric pulses, can become a promising new tool for fundamental research on this important biotechnology. Listeria monocytogenes mutants lacking DltA or MprF and assayed for sensitivity to the cathelicidin like anti-microbial cationic peptide (mCRAMP), were developed to study the effect of cell wall charge on electroporation. Working in the irreversible electroporation regime (IRE), we found that application of a sequence of 50 pulses, each 50μs duration, 12.5kV/cm field, delivered at 2Hz led to 2.67±0.29 log reduction in wild-type L. monocytogenes, log 2.60±0.19 in the MprF-minus mutant, and log 1.33±0.13 in the DltA-minus mutant. The experimental observation that the DltA-minus mutant was highly susceptible to cationic mCRAMP and resistant to IRE suggests that the charge on the bacterial cell wall affects electroporation and shows that this approach may be promising for fundamental studies on electroporation.
Cancer immunology research | 2017
Weiwen Deng; Weiqun Liu; Thomas Hudson; Chris S. Rae; Ed Lemmens; Anthony L. Desbien; Bill Hanson; Pete Lauer; Thomas W. Dubensky; Meredith Leong
Development of effective and durable antitumor immunity requires the activation, expansion and maintenance of function of tumor antigen-specific effector T cells. The mechanism of action of recently FDA approved monoclonal antibody (mAb) therapies which target immune checkpoints such as PD-1 and CTLA-4 and uncouple inhibitory pathways from the activation of antigen-specific T cells underlines the critical requirement for antigen-specific priming to elicit potent and long-lasting anti-tumor immunity. However, immune checkpoint blockade results in significant clinical benefit largely in malignancies with high mutational burden, where the tumor itself can initiate T cell priming, but is less effective when used as a single agent among cancers with lower mutational burden, associated typically with a low level of lymphocyte infiltration into the tumor microenvironment (TME). We are evaluating clinical immunotherapy regimens combining immune checkpoint blockade with recombinant live-attenuated double-deleted strains of the intracellular bacterium Listeria monocytogenes (LADD), based on a hypothesis that effective immunotherapy will result from agents that in combination re-polarize the TME to facilitate immune effector cell function, prime functional tumor-specific T cells in the appropriate context, and block inhibitory signaling pathways. Here we show that tumor antigen-expressing LADD therapy enhanced CD8+ T cell effector function, resulting in significant tumor eradication in several preclinical mouse models. LADD treatment in addition induced favorable changes in the TME, as shown by enhanced CD8+ T effector function, recruitment of antigen presenting cells and reduction of regulatory T cells. Treatment regimens combining LADD-based immunotherapy with PD-1 immune checkpoint blockade significantly enhanced antitumor efficacy in CT26, 4T1 and MC38 tumor models. Together these data support the rationale for integrating LADD-based immunotherapy into clinical regimens with immune checkpoint blockade on the basis that TME modification and priming of tumor Ag-specific T cells significantly enhances the activity of mAb therapies blocking T cell inhibitory pathways. Citation Format: Weiwen Deng, Weiqun Liu, Thomas Hudson, Chris S. Rae, Ed Lemmens, Anthony Desbien, Bill Hanson, Pete Lauer, Thomas W. Dubensky, Jr., Meredith Leong. Synergistic antitumor efficacy in mice with immunotherapy regimens combining recombinant live-attenuated Listeria with immune checkpoint inhibitors. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2016 Oct 20-23; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2017;5(3 Suppl):Abstract nr B50.
Cancer immunology research | 2016
Weiwen Deng; Takahiro Tsujikawa; Nitya Nair; Thomas Hudson; Weiqun Liu; Chris S. Rae; Edward Lemmens; Anthony W. Desbien; William G. Hanson; Peter Lauer; Lisa M. Coussens; Dirk G. Brockstedt; Thomas W. Dubensky; Meredith Leong
Modification of the tumor microenvironment (TME) to promote immune-mediated tumor cell destruction is considered to be an essential step for effective immunotherapy. We are evaluating recombinant live-attenuated, double deleted Listeria monocytogenes (LADD) as an immunotherapy platform for the treatment of cancer in several clinical trials in diverse indications. One LADD strain, known as CRS-207, has been engineered to express the tumor-associated antigen mesothelin and is being tested in pancreatic, ovarian and mesothelioma malignancies. Using multi-dimensional immunohistochemistry of paired biopsies from three patients with mesothelioma, we demonstrate the recruitment and expansion of effector tumor-infiltrating lymphocytes, including CD8+ T cells, mature DCs, CD163− macrophages and NK cells, following two prime infusions of CRS-207. In several different syngeneic mouse tumor models, we demonstrate that treatment with LADD engineered to express endogenous tumor antigens also induced significant changes in the TME that were consistent with changes observed in cancer patients, including enhanced CD8+ T cell effector function, recruitment of critical antigen presenting cells and reduction of regulatory T cells, and these changes correlated with significant therapeutic benefit in the mouse. LADD-induced changes to the TME were required for synergistic therapeutic antitumor efficacy combined with immune checkpoint blockade, including targeting MC38 tumor-specific neoantigens. Together, these findings demonstrate that intravenous administration of recombinant LADD therapy induces favorable changes in the tumor microenvironment in mice and humans with promise for effective outcomes in human clinical trials. Citation Format: Weiwen Deng, Takahiro Tsujikawa, Nitya Nair, Thomas Hudson, Weiqun Liu, Chris S. Rae, Edward E. Lemmens, Anthony W. Desbien, William Hanson, Peter Lauer, Lisa M. Coussens, Dirk G. Brockstedt, Thomas W. Dubensky, Jr., Meredith L. Leong. Favorable changes in tumor microenvironment following intravenous dosing with live attenuated Listeria monocytogenes-based immunotherapy [abstract]. In: Proceedings of the Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; 2016 Sept 25-28; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2016;4(11 Suppl):Abstract nr A013.
Cell Reports | 2018
Erik Van Dis; Kimberly M. Sogi; Chris S. Rae; Kelsey E. Sivick; Natalie H. Surh; Meredith Leong; David B. Kanne; Ken Metchette; Justin J. Leong; Jacob R. Bruml; Vivian Chen; Kartoosh Heydari; Nathalie Cadieux; Thomas G. Evans; Sarah M. McWhirter; Thomas W. Dubensky; Daniel A. Portnoy; Sarah A. Stanley