Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Sherlock is active.

Publication


Featured researches published by Chris Sherlock.


Annals of Statistics | 2015

On the efficiency of pseudo-marginal random walk Metropolis algorithms

Chris Sherlock; Alexandre H. Thiery; Gareth O. Roberts; Jeffrey S. Rosenthal

We examine the behaviour of the pseudo-marginal random walk Metropolis algorithm, where evaluations of the target density for the accept/reject probability are estimated rather than computed precisely. Under relatively general conditions on the target distribution, we obtain limiting formulae for the acceptance rate and for the expected squared jump distance, as the dimension of the target approaches infinity, under the assumption that the noise in the estimate of the log-target is additive and is independent of the position. For targets with independent and identically distributed components, we also obtain a limiting diffusion for the first component. We then consider the overall efficiency of the algorithm, in terms of both speed of mixing and computational time. Assuming the additive noise is Gaussian and is inversely proportional to the number of unbiased estimates that are used, we prove that the algorithm is optimally efficient when the variance of the noise is approximately 3.3 and the acceptance rate is approximately 7.0%. We also find that the optimal scaling is insensitive to the noise and that the optimal variance of the noise is insensitive to the scaling. The theory is illustrated with a simulation study using the particle random walk Metropolis.


Bernoulli | 2009

Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets

Chris Sherlock; Gareth O. Roberts

Scaling of proposals for Metropolis algorithms is an important practical problem in MCMC implementation. Criteria for scaling based on empirical acceptance rates of algorithms have been found to work consistently well across a broad range of problems. Essentially, proposal jump sizes are increased when acceptance rates are high and decreased when rates are low. In recent years, considerable theoretical support has been given for rules of this type which work on the basis that acceptance rates around 0.234 should be preferred. This has been based on asymptotic results that approximate high dimensional algorithm trajectories by diffusions. In this paper, we develop a novel approach to understanding 0.234 which avoids the need for diffusion limits. We derive explicit formulae for algorithm efficiency and acceptance rates as functions of the scaling parameter. We apply these to the family of elliptically symmetric target densities, where further illuminating explicit results are possible. Under suitable conditions, we verify the 0.234 rule for a new class of target densities. Moreover, we can characterise cases where 0.234 fails to hold, either because the target density is too diffuse in a sense we make precise, or because the eccentricity of the target density is too severe, again in a sense we make precise. We provide numerical verifications of our results.


Statistical Science | 2010

The Random Walk Metropolis: Linking Theory and Practice Through a Case Study

Chris Sherlock; Paul Fearnhead; Gareth O. Roberts

The random walk Metropolis (RWM) is one of the most common Markov Chain Monte Carlo algorithms in practical use today. Its theoretical properties have been extensively explored for certain classes of target, and a number of results with important practical implications have been derived. This article draws together a selection of new and existing key results and concepts and describes their implications. The impact of each new idea on algorithm efficiency is demonstrated for the practical example of the Markov modulated Poisson process (MMPP). A reparameterisation of the MMPP which leads to a highly efficient RWM within Gibbs algorithm in certain circumstances is also developed.


Biometrics | 2014

Inference for reaction networks using the linear noise approximation

Paul Fearnhead; Vasileios Giagos; Chris Sherlock

We consider inference for the reaction rates in discretely observed networks such as those found in models for systems biology, population ecology, and epidemics. Most such networks are neither slow enough nor small enough for inference via the true state-dependent Markov jump process to be feasible. Typically, inference is conducted by approximating the dynamics through an ordinary differential equation (ODE) or a stochastic differential equation (SDE). The former ignores the stochasticity in the true model and can lead to inaccurate inferences. The latter is more accurate but is harder to implement as the transition density of the SDE model is generally unknown. The linear noise approximation (LNA) arises from a first-order Taylor expansion of the approximating SDE about a deterministic solution and can be viewed as a compromise between the ODE and SDE models. It is a stochastic model, but discrete time transition probabilities for the LNA are available through the solution of a series of ordinary differential equations. We describe how a restarting LNA can be efficiently used to perform inference for a general class of reaction networks; evaluate the accuracy of such an approach; and show how and when this approach is either statistically or computationally more efficient than ODE or SDE methods. We apply the LNA to analyze Google Flu Trends data from the North and South Islands of New Zealand, and are able to obtain more accurate short-term forecasts of new flu cases than another recently proposed method, although at a greater computational cost.


Statistics and Computing | 2015

Delayed acceptance particle MCMC for exact inference in stochastic kinetic models

Andrew Golightly; Daniel A. Henderson; Chris Sherlock

Recently-proposed particle MCMC methods provide a flexible way of performing Bayesian inference for parameters governing stochastic kinetic models defined as Markov (jump) processes (MJPs). Each iteration of the scheme requires an estimate of the marginal likelihood calculated from the output of a sequential Monte Carlo scheme (also known as a particle filter). Consequently, the method can be extremely computationally intensive. We therefore aim to avoid most instances of the expensive likelihood calculation through use of a fast approximation. We consider two approximations: the chemical Langevin equation diffusion approximation (CLE) and the linear noise approximation (LNA). Either an estimate of the marginal likelihood under the CLE, or the tractable marginal likelihood under the LNA can be used to calculate a first step acceptance probability. Only if a proposal is accepted under the approximation do we then run a sequential Monte Carlo scheme to compute an estimate of the marginal likelihood under the true MJP and construct a second stage acceptance probability that permits exact (simulation based) inference for the MJP. We therefore avoid expensive calculations for proposals that are likely to be rejected. We illustrate the method by considering inference for parameters governing a Lotka–Volterra system, a model of gene expression and a simple epidemic process.


Statistics & Probability Letters | 2014

Langevin diffusions and the Metropolis-adjusted Langevin algorithm

Tatiana Xifara; Chris Sherlock; Samuel Livingstone; Simon Byrne; Mark A. Girolami

We describe a Langevin diffusion with a target stationary density with respect to Lebesgue measure, as opposed to the volume measure of a previously-proposed diffusion. The two are sometimes equivalent but in general distinct and lead to different Metropolis-adjusted Langevin algorithms, which we compare.


Journal of Applied Microbiology | 2011

The prevalence of antimicrobial-resistant Escherichia coli in sympatric wild rodents varies by season and host

Nicola Williams; Chris Sherlock; Trevor Jones; Helen E. Clough; Sandra Telfer; Michael Begon; N. P. French; C. A. Hart; M. Bennett

Aims:  To investigate the prevalence and temporal patterns of antimicrobial resistance in wild rodents with no apparent exposure to antimicrobials.


Journal of The Royal Statistical Society Series C-applied Statistics | 2013

A coupled hidden Markov model for disease interactions

Chris Sherlock; Tatiana Xifara; Sandra Telfer; Michael Begon

To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis–Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites.


PLOS ONE | 2014

Idiopathic Focal Eosinophilic Enteritis (IFEE), an Emerging Cause of Abdominal Pain in Horses: The Effect of Age, Time and Geographical Location on Risk

D. C. Archer; Deborah Costain; Chris Sherlock

Background Idiopathic focal eosinophilic enteritis (IFEE) is an emerging cause of abdominal pain (colic) in horses that frequently requires surgical intervention to prevent death. The epidemiology of IFEE is poorly understood and it is difficult to diagnose pre-operatively. The aetiology of this condition and methods of possible prevention are currently unknown. The aims of this study were to investigate temporal and spatial heterogeneity in IFEE risk and to ascertain the effect of horse age on risk. Methodology/Principal Findings A retrospective, nested case-control study was undertaken using data from 85 IFEE cases and 848 randomly selected controls admitted to a UK equine hospital for exploratory laparotomy to investigate the cause of colic over a 10-year period. Generalised additive models (GAMs) were used to quantify temporal and age effects on the odds of IFEE and to provide mapped estimates of ‘residual’ risk over the study region. The relative risk of IFEE increased over the study period (p = 0.001) and a seasonal pattern was evident (p<0.01) with greatest risk of IFEE being identified between the months of July and November. IFEE risk decreased with increasing age (p<0.001) with younger (0–5 years old) horses being at greatest risk. The mapped surface estimate exhibited significantly atypical sub-regions (p<0.001) with increased IFEE risk in horses residing in the North-West of the study region. Conclusions/Significance IFEE was found to exhibit both spatial and temporal variation in risk and is more likely to occur in younger horses. This information may help to identify horses at increased risk of IFEE, provide clues about the aetiology of this condition and to identify areas that require further research.


Journal of Computational and Graphical Statistics | 2017

Adaptive, Delayed-Acceptance MCMC for Targets With Expensive Likelihoods

Chris Sherlock; Andrew Golightly; Daniel A. Henderson

ABSTRACT When conducting Bayesian inference, delayed-acceptance (DA) Metropolis–Hastings (MH) algorithms and DA pseudo-marginal MH algorithms can be applied when it is computationally expensive to calculate the true posterior or an unbiased estimate thereof, but a computationally cheap approximation is available. A first accept-reject stage is applied, with the cheap approximation substituted for the true posterior in the MH acceptance ratio. Only for those proposals that pass through the first stage is the computationally expensive true posterior (or unbiased estimate thereof) evaluated, with a second accept-reject stage ensuring that detailed balance is satisfied with respect to the intended true posterior. In some scenarios, there is no obvious computationally cheap approximation. A weighted average of previous evaluations of the computationally expensive posterior provides a generic approximation to the posterior. If only the k-nearest neighbors have nonzero weights then evaluation of the approximate posterior can be made computationally cheap provided that the points at which the posterior has been evaluated are stored in a multi-dimensional binary tree, known as a KD-tree. The contents of the KD-tree are potentially updated after every computationally intensive evaluation. The resulting adaptive, delayed-acceptance [pseudo-marginal] Metropolis–Hastings algorithm is justified both theoretically and empirically. Guidance on tuning parameters is provided and the methodology is applied to a discretely observed Markov jump process characterizing predator–prey interactions and an ODE system describing the dynamics of an autoregulatory gene network. Supplementary material for this article is available online.

Collaboration


Dive into the Chris Sherlock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre H. Thiery

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge