Chris Sweetapple
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chris Sweetapple.
Global Challenges | 2017
David Butler; Sarah Ward; Chris Sweetapple; Maryam Astaraie-Imani; Kegong Diao; Raziyeh Farmani; Guangtao Fu
Abstract Global threats such as climate change, population growth, and rapid urbanization pose a huge future challenge to water management, and, to ensure the ongoing reliability, resilience and sustainability of service provision, a paradigm shift is required. This paper presents an overarching framework that supports the development of strategies for reliable provision of services while explicitly addressing the need for greater resilience to emerging threats, leading to more sustainable solutions. The framework logically relates global threats, the water system (in its broadest sense), impacts on system performance, and social, economic, and environmental consequences. It identifies multiple opportunities for intervention, illustrating how mitigation, adaptation, coping, and learning each address different elements of the framework. This provides greater clarity to decision makers and will enable better informed choices to be made. The framework facilitates four types of analysis and evaluation to support the development of reliable, resilient, and sustainable solutions: “top‐down,” “bottom‐up,” “middle based,” and “circular” and provides a clear, visual representation of how/when each may be used. In particular, the potential benefits of a middle‐based analysis, which focuses on system failure modes and their impacts and enables the effects of unknown threats to be accounted for, are highlighted. The disparate themes of reliability, resilience and sustainability are also logically integrated and their relationships explored in terms of properties and performance. Although these latter two terms are often conflated in resilience and sustainability metrics, the argument is made in this work that the performance of a reliable, resilient, or sustainable system must be distinguished from the properties that enable this performance to be achieved.
Water Research | 2016
Kegong Diao; Chris Sweetapple; Raziyeh Farmani; Guangtao Fu; Sarah Ward; David Butler
Evaluating and enhancing resilience in water infrastructure is a crucial step towards more sustainable urban water management. As a prerequisite to enhancing resilience, a detailed understanding is required of the inherent resilience of the underlying system. Differing from traditional risk analysis, here we propose a global resilience analysis (GRA) approach that shifts the objective from analysing multiple and unknown threats to analysing the more identifiable and measurable system responses to extreme conditions, i.e. potential failure modes. GRA aims to evaluate a systems resilience to a possible failure mode regardless of the causal threat(s) (known or unknown, external or internal). The method is applied to test the resilience of four water distribution systems (WDSs) with various features to three typical failure modes (pipe failure, excess demand, and substance intrusion). The study reveals GRA provides an overview of a water systems resilience to various failure modes. For each failure mode, it identifies the range of corresponding failure impacts and reveals extreme scenarios (e.g. the complete loss of water supply with only 5% pipe failure, or still meeting 80% of demand despite over 70% of pipes failing). GRA also reveals that increased resilience to one failure mode may decrease resilience to another and increasing system capacity may delay the systems recovery in some situations. It is also shown that selecting an appropriate level of detail for hydraulic models is of great importance in resilience analysis. The method can be used as a comprehensive diagnostic framework to evaluate a range of interventions for improving system resilience in future studies.
Journal of Environmental Management | 2017
Mingming Wang; Yuanxiang Sun; Chris Sweetapple
Storage is important for flood mitigation and non-point source pollution control. However, to seek a cost-effective design scheme for storage tanks is very complex. This paper presents a two-stage optimization framework to find an optimal scheme for storage tanks using storm water management model (SWMM). The objectives are to minimize flooding, total suspended solids (TSS) load and storage cost. The framework includes two modules: (i) the analytical module, which evaluates and ranks the flooding nodes with the analytic hierarchy process (AHP) using two indicators (flood depth and flood duration), and then obtains the preliminary scheme by calculating two efficiency indicators (flood reduction efficiency and TSS reduction efficiency); (ii) the iteration module, which obtains an optimal scheme using a generalized pattern search (GPS) method based on the preliminary scheme generated by the analytical module. The proposed approach was applied to a catchment in CZ city, China, to test its capability in choosing design alternatives. Different rainfall scenarios are considered to test its robustness. The results demonstrate that the optimal framework is feasible, and the optimization is fast based on the preliminary scheme. The optimized scheme is better than the preliminary scheme for reducing runoff and pollutant loads under a given storage cost. The multi-objective optimization framework presented in this paper may be useful in finding the best scheme of storage tanks or low impact development (LID) controls.
Journal of Environmental Management | 2017
Mingming Wang; Chris Sweetapple; Guangtao Fu; Raziyeh Farmani; David Butler
This paper presents a new framework for decision making in sustainable drainage system (SuDS) scheme design. It integrates resilience, hydraulic performance, pollution control, rainwater usage, energy analysis, greenhouse gas (GHG) emissions and costs, and has 12 indicators. The multi-criteria analysis methods of entropy weight and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were selected to support SuDS scheme selection. The effectiveness of the framework is demonstrated with a SuDS case in China. Indicators used include flood volume, flood duration, a hydraulic performance indicator, cost and resilience. Resilience is an important design consideration, and it supports scheme selection in the case study. The proposed framework will help a decision maker to choose an appropriate design scheme for implementation without subjectivity.
Journal of Environmental Engineering | 2017
Chris Sweetapple; Guangtao Fu; David Butler
AbstractThis paper presents a framework for reliable, robust, and resilient system design, addressing the need for acceptable performance not only to be provided under expected conditions, but to be maintained and/or quickly returned to when threats act upon a system. This is achieved through incorporation of multiobjective optimization; assessment of reliability, robustness, and resilience; and filtering and prioritization of solutions at key intervals. The effectiveness of the framework and benefits of its use are demonstrated with a wastewater treatment plant (WWTP) control strategy design problem. The effects of extreme, nondesign loads on highly optimized control strategies have not previously been explored, and it is found in this example that options yielding the greatest improvements under design conditions typically provide poor effluent quality robustness and resilience to influent perturbations. By integrating robustness and resilience, solutions can be identified that meet key performance obje...
Water Science and Technology | 2018
Chris Sweetapple; Guangtao Fu; Raziyeh Farmani; Fanlin Meng; Sarah Ward; David Butler
Resilience building commonly focuses on attributes such as redundancy. Whilst this may be effective in some cases, provision of specific attributes does not guarantee resilient performance and research is required to determine the suitability of such approaches. This study uses 250 combined sewer system virtual case studies to explore the effects of two attribute-based interventions (increasing distributed storage and reducing imperviousness) on performance-based resilience measures. These are found to provide improvement in performance under system failure in the majority of case studies, but it is also shown that attribute-based intervention development can result in reduced resilience.
Water Research | 2018
Fanlin Meng; Guangtao Fu; Raziyeh Farmani; Chris Sweetapple; David Butler
Resilience has been increasingly pursued in the management of water distribution systems (WDSs) such that a system can adapt to and rapidly recover from potential failures in face of a deep uncertain and unpredictable future. Topology has been assumed to have a great impact on resilience of WDSs, and is the basis of many studies on assessing and building resilience. However, this fundamental assumption has not been justified and requires investigation. To address this, a novel framework for mapping between resilience performance and network topological attributes is proposed. It is applied to WDSs here but can be adaptable to other network systems. In the framework, resilience is comprehensively assessed using stress-strain tests which measure system performance on six metrics corresponding to system resistance, absorption and restoration capacities. Six key topological attributes of WDSs (connectivity, efficiency, centrality, diversity, robustness and modularity) are studied by mathematical abstraction of WDSs as graphs and measured by eight statistical metrics in graph theory. The interplay between resilience and topological attributes is revealed by the correlations between their corresponding metrics, based on 85 WDSs with different sizes and topological features. Further, network variants from a single WDS are generated to uncover the value of topological attribute metrics in guiding the extension/rehabilitation design of WDSs towards resilience. Results show that only certain aspects of resilience performance, i.e. spatial and temporal scales of failure impacts, are strongly influenced by some (not all) topological attributes, i.e. network connectivity, efficiency, modularity and centrality. Metrics for describing the topological attributes of WDSs need to be carefully selected; for example, clustering coefficient is found to be weakly correlated with resilience performance compared to other metrics of network connectivity (due to the grid-like structures of WDSs). Topological attribute metrics alone are not sufficient to guide the design of resilient WDSs and key details such as the location of water sources also need to be considered.
Water Research | 2018
Chris Sweetapple; Maryam Astaraie-Imani; David Butler
Reliability, risk and resilience are strongly related concepts and have been widely utilised in the context of water infrastructure performance analysis. However, there are many ways in which each measure can be formulated (depending on the reliability of what, risk to what from what, and resilience of what to what) and the relationships will differ depending on the formulations used. This research has developed a framework to explore the ways in which reliability, risk and resilience may be formulated, identifying possible components and knowledge required for calculation of each and formalising the conceptual relationships between specified and general resilience. This utilises the Safe & SuRe framework, which shows how threats to a water system can result in consequences for society, the economy and the environment, to enable the formulations to be derived in a logical manner and to ensure consistency in any comparisons. The framework is used to investigate the relationship between levels of reliability, risk and resilience provided by multiple operational control and design strategies for an urban wastewater system case study. The results highlight that, although reliability, risk and resilience values may exhibit correlations, designing for just one is insufficient: reliability, risk and resilience are complementary rather than interchangeable measures and one cannot be used as a substitute for another. Furthermore, it is shown that commonly used formulations address only a small fraction of the possibilities and a more comprehensive assessment of a systems response to threats is necessary to provide a comprehensive understanding of risk and resilience.
Journal of Hydrology | 2018
Wei Qi; Junguo Liu; Hong Yang; Chris Sweetapple
Journal of Hydrology | 2018
Giorgio Mannina; David Butler; Lorenzo Benedetti; Ana Deletic; Harsha Fowdar; Guangtao Fu; Manfred Kleidorfer; David McCarthy; Peter Steen Mikkelsen; Wolfgang Rauch; Chris Sweetapple; Luca Vezzaro; Zhiguo Yuan; Patrick Willems