Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris W. Diehnelt is active.

Publication


Featured researches published by Chris W. Diehnelt.


Journal of the American Chemical Society | 2009

Creating Protein Affinity Reagents by Combining Peptide Ligands on Synthetic DNA Scaffolds

Berea A. R. Williams; Chris W. Diehnelt; Paul E. Belcher; Matthew P. Greving; Neal W. Woodbury; Stephen Albert Johnston; John C. Chaput

A full understanding of the proteome will require ligands to all of the proteins encoded by genomes. While antibodies represent the principle affinity reagents used to bind proteins, their limitations have created a need for new ligands to large numbers of proteins. Here we propose a general concept to obtain protein affinity reagents that avoids animal immunization and iterative selection steps. Central to this process is the idea that small peptide libraries contain sequences that will bind to independent regions on a protein surface and that these ligands can be combined on synthetic scaffolds to create high affinity bivalent reagents. To demonstrate the feasibility of this approach, an array of 4000 unique 12-mer peptides was screened to identify sequences that bind to nonoverlapping sites on the yeast regulatory protein Gal80. Individual peptide ligands were screened at different distances using a novel DNA linking strategy to identify the optimal peptide pair and peptide pair separation distance required to transform two weaker ligands into a single high affinity protein capture reagent. A synthetic antibody or synbody was created with 5 nM affinity to Gal80 that functions in conventional ELISA and pull-down assays. We validated our synthetic antibody approach by creating a second synbody to human transferrin. In both cases, we observed an increase in binding affinity of approximately 1000-fold (DeltaDeltaG = approximately 4.1 kcal/mol) between the individual peptides and final bivalent synbody construct.


PLOS ONE | 2010

Discovery of high-affinity protein binding ligands - Backwards

Chris W. Diehnelt; Miti Shah; Nidhi Gupta; Paul E. Belcher; Matthew P. Greving; Phillip Stafford; Stephen Albert Johnston

Background There is a pressing need for high-affinity protein binding ligands for all proteins in the human and other proteomes. Numerous groups are working to develop protein binding ligands but most approaches develop ligands using the same strategy in which a large library of structured ligands is screened against a protein target to identify a high-affinity ligand for the target. While this methodology generates high-affinity ligands for the target, it is generally an iterative process that can be difficult to adapt for the generation of ligands for large numbers of proteins. Methodology/Principal Findings We have developed a class of peptide-based protein ligands, called synbodies, which allow this process to be run backwards – i.e. make a synbody and then screen it against a library of proteins to discover the target. By screening a synbody against an array of 8,000 human proteins, we can identify which protein in the library binds the synbody with high affinity. We used this method to develop a high-affinity synbody that specifically binds AKT1 with a Kd<5 nM. It was found that the peptides that compose the synbody bind AKT1 with low micromolar affinity, implying that the affinity and specificity is a product of the bivalent interaction of the synbody with AKT1. We developed a synbody for another protein, ABL1 using the same method. Conclusions/Significance This method delivered a high-affinity ligand for a target protein in a single discovery step. This is in contrast to other techniques that require subsequent rounds of mutational improvement to yield nanomolar ligands. As this technique is easily scalable, we believe that it could be possible to develop ligands to all the proteins in any proteome using this approach.


International Journal of Mass Spectrometry | 2001

Effectiveness of atomic and polyatomic primary ions for organic secondary ion mass spectrometry

Chris W. Diehnelt; Michael J. Van Stipdonk; E. A. Schweikert

Abstract With the increased application of polyatomic primary ions for organic secondary ion mass spectrometry, a method to compare the performance of the various available projectiles is needed. In this work, primary ion performance was evaluated based on analyte-specific secondary ion yield, the amount of fragmentation, and the amount of metastable decay induced by each primary ion. These measurements were used to construct a projectile efficiency number for each primary ion applied to a specific analyte. An organic acid, phospholipids, and alkyl sulfates, prepared as multilayer and monolayer surfaces were analyzed with various atomic and polyatomic primary ions. It was found that polyatomic primary ions are best suited for multilayer organic samples whereas atomic primary ions are most effective for monolayer organic samples. Results are compared to other studies that measure the ion formation efficiency of various primary ions.


Frontiers in Microbiology | 2013

Peptide array based discovery of synthetic antimicrobial peptides

Chris W. Diehnelt

ANTIMICROBIAL PEPTIDES AS A MEANS TO COMBAT ANTIBIOTIC RESISTANCE The rise of antibiotic resistance has emphasized the shortcomings in antibiotic drug development (Boucher et al., 2013). The move from biological based discovery methods to chemical approaches to identify candidates has left the antibiotic pipeline painfully dry (Lewis, 2013). The paucity of compounds that are effective against antibiotic resistant pathogens has led to great interest in antimicrobial peptides (AMPs) as potential solutions to the rise of resistant organisms (Hancock and Sahl, 2006; Fox, 2013). AMPs are short (5–50 amino acid) peptides that are produced by virtually all organisms as part of an innate immune system. There are 2,398 AMPs that have been reported (Antimicrobial Peptide Database—September 2013) and over 80% are cationic AMPs (CAMPs). Most positively charged AMPs interact with anionic bacterial membranes (Schmidtchen and Malmsten, 2013) which leads to a rapid breakdown in membrane function and subsequent cell death (Wimley, 2010). It is this mechanism of action that is of interest as it should be difficult for bacteria to develop resistance against lethal concentrations of CAMPs. However, many AMPs have poor druglike properties and questions remain about that their ultimate utility as antibiotics (Brogden and Brogden, 2011). Great strides have been made in improving the protease stability; pharmacokinetics and therapeutic profile of peptide drugs and these methods have been used to improve the drug-like properties of AMPs. Despite the significant developments that have been made to advance AMPs through the clinical pipeline there has yet to be an approved AMP therapeutic (Vila-Farres et al., 2012). Clearly there is an ongoing need for additional AMP candidates as a tool in the fight against antibiotic resistant bacteria.


PLOS ONE | 2013

A technology for developing synbodies with antibacterial activity.

Valeriy Domenyuk; Andrey Loskutov; Stephen Albert Johnston; Chris W. Diehnelt

The rise in antibiotic resistance has led to an increased research focus on discovery of new antibacterial candidates. While broad-spectrum antibiotics are widely pursued, there is evidence that resistance arises in part from the wide spread use of these antibiotics. Our group has developed a system to produce protein affinity agents, called synbodies, which have high affinity and specificity for their target. In this report, we describe the adaptation of this system to produce new antibacterial candidates towards a target bacterium. The system functions by screening target bacteria against an array of 10,000 random sequence peptides and, using a combination of membrane labeling and intracellular dyes, we identified peptides with target specific binding or killing functions. Binding and lytic peptides were identified in this manner and in vitro tests confirmed the activity of the lead peptides. A peptide with antibacterial activity was linked to a peptide specifically binding Staphylococcus aureus to create a synbody with increased antibacterial activity. Subsequent tests showed that this peptide could block S. aureus induced killing of HEK293 cells in a co-culture experiment. These results demonstrate the feasibility of using the synbody system to discover new antibacterial candidate agents.


PLOS ONE | 2010

Thermodynamic Additivity of Sequence Variations: An Algorithm for Creating High Affinity Peptides Without Large Libraries or Structural Information

Matthew P. Greving; Paul E. Belcher; Chris W. Diehnelt; Maria J. Gonzalez-Moa; Jack S Emery; Jinglin Fu; Stephen Albert Johnston; Neal W. Woodbury

Background There is a significant need for affinity reagents with high target affinity/specificity that can be developed rapidly and inexpensively. Existing affinity reagent development approaches, including protein mutagenesis, directed evolution, and fragment-based design utilize large libraries and/or require structural information thereby adding time and expense. Until now, no systematic approach to affinity reagent development existed that could produce nanomolar affinity from small chemically synthesized peptide libraries without the aid of structural information. Methodology/Principal Findings Based on the principle of additivity, we have developed an algorithm for generating high affinity peptide ligands. In this algorithm, point-variations in a lead sequence are screened and combined in a systematic manner to achieve additive binding energies. To demonstrate this approach, low-affinity lead peptides for multiple protein targets were identified from sparse random sequence space and optimized to high affinity in just two chemical steps. In one example, a TNF-α binding peptide with Kd = 90 nM and high target specificity was generated. The changes in binding energy associated with each variation were generally additive upon combining variations, validating the basis of the algorithm. Interestingly, cooperativity between point-variations was not observed, and in a few specific cases, combinations were less than energetically additive. Conclusions/Significance By using this additivity algorithm, peptide ligands with high affinity for protein targets were generated. With this algorithm, one of the highest affinity TNF-α binding peptides reported to date was produced. Most importantly, high affinity was achieved from small, chemically-synthesized libraries without the need for structural information at any time during the process. This is significantly different than protein mutagenesis, directed evolution, or fragment-based design approaches, which rely on large libraries and/or structural guidance. With this algorithm, high affinity/specificity peptide ligands can be developed rapidly, inexpensively, and in an entirely chemical manner.


Bioconjugate Chemistry | 2011

Engineering a synthetic ligand for tumor necrosis factor-alpha.

Nidhi Gupta; Paul E. Belcher; Stephen Albert Johnston; Chris W. Diehnelt

One approach to prepare protein binding ligands is to join two low-affinity ligands that bind different sites on the target protein to create a high-affinity bivalent ligand. This typically requires some knowledge of the ligand binding site and requires exquisite orientation of the ligands in order to achieve maximum binding affinity. Here, we explored the limit of affinity improvement possible with no a priori knowledge of peptide binding site and with minimal effort spent in linking the lead peptides. We compared the affinity enhancement from linking two peptides with low affinity for tumor necrosis factor-α (TNFA) to the affinity enhancement from linking affinity improved versions of these peptides using several different scaffolds. We found that we achieved the highest affinity gain not by the precise positioning of the peptides, but rather by using affinity improved versions of the lead peptides to produce synbodies with apparent K(D)s of 9 to 48 nM. Kinetic analysis showed that the binding kinetics of the synbody are strongly influenced by the kinetics of the starting peptide. This suggests that careful selection of peptides based on their kinetic profile prior to linking will influence the kinetics of the final binding agent.


Analytical Chemistry | 2017

Cross-Reactive Synbody Affinity Ligands for Capturing Diverse Noroviruses

Nidhi Gupta; John C. Lainson; Paul E. Belcher; Luhui Shen; Hugh S. Mason; Stephen Albert Johnston; Chris W. Diehnelt

Noroviruses are the most common cause of acute gastroenteritis in the developed world. Noroviruses are a diverse group of nonenveloped RNA viruses that are continuously evolving. This leads to the rise of immunologically distinct strains of the same genotype on a frequent basis. This diversity presents a unique challenge for detection and tracking of new strains, with the continuous need for new norovirus affinity ligands. Our group developed a family of bivalent synbody affinity ligands using a virus-like particle (VLP) from the 2006 GII.4 Minerva strain of norovirus. We produced more than 20 synbodies with low nanomolar dissociation constants (KD < 10 nM) for GII.4 VLP. We measured binding affinity for four synbodies against VLPs from multiple GI and GII genotypes and found that the synbodies were broadly cross-reactive with affinities that ranged from 0.5 to 8 nM. We tested the ability of these synbodies to capture norovirus from dilute solutions and found that one synbody could capture GII.4 from a 200 000-fold dilution from a norovirus positive stool sample. When these synbodies were tested for the ability to capture of multiple genotypes, we found that four different genotypes were recognized. These data demonstrate that the synbody approach can generate multiple affinity ligands for future use in norovirus detection and possible therapeutic development.


Bioconjugate Chemistry | 2015

Conjugation Approach To Produce a Staphylococcus aureus Synbody with Activity in Serum

John C. Lainson; Mariana Ferrer Fuenmayor; Stephen Albert Johnston; Chris W. Diehnelt

Synbodies show promise as a new class of synthetic antibiotics. Here, we explore improvements in their activity and production through conjugation chemistry. Maleimide conjugation is a widely used conjugation strategy due to its high yield, selectivity, and low cost. We used this strategy to conjugate two antibacterial peptides to produce a bivalent antibacterial peptide, called a synbody that has bactericidal activity against methicillin resistant Staphylococcus aureus (MRSA). The synbody was prepared by conjugation of a partially d-amino acid substituted synthetic antibacterial peptide to a bis-maleimide scaffold. The synbody slowly degrades in serum, but also undergoes exchange reactions with other serum proteins, such as albumin. Therefore, we hydrolyzed the thiosuccinimide ring using a mild hydrolysis protocol to produce a new synbody with similar bactericidal activity. The synbody was now resistant to exchange reactions and maintained bactericidal activity in serum for 2 h. This work demonstrates that low-cost maleimide coupling can be used to produce antibacterial peptide conjugates with activity in serum.


Analytical Biochemistry | 2010

High-throughput screening in two dimensions: Binding intensity and off-rate on a peptide microarray

Matthew P. Greving; Paul E. Belcher; Conor D. Cox; Douglas Daniel; Chris W. Diehnelt; Neal W. Woodbury

We report a high-throughput two-dimensional microarray-based screen, incorporating both target binding intensity and off-rate, which can be used to analyze thousands of compounds in a single binding assay. Relative binding intensities and time-resolved dissociation are measured for labeled tumor necrosis factor alpha (TNF-alpha) bound to a peptide microarray. The time-resolved dissociation is fitted to a one-component exponential decay model, from which relative dissociation rates are determined for all peptides with binding intensities above background. We show that most peptides with the slowest off-rates on the microarray also have the slowest off-rates when measured by surface plasmon resonance (SPR).

Collaboration


Dive into the Chris W. Diehnelt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nidhi Gupta

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge