Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Yesson is active.

Publication


Featured researches published by Chris Yesson.


PLOS ONE | 2007

How global is the global biodiversity information facility

Chris Yesson; Peter W. Brewer; Tim Sutton; Neil Caithness; Jaspreet Singh Pahwa; Mikhaila Burgess; Wiliam A Gray; Richard J. White; Andrew Clifford Jones; Frank A. Bisby; Alastair Culham

There is a concerted global effort to digitize biodiversity occurrence data from herbarium and museum collections that together offer an unparalleled archive of life on Earth over the past few centuries. The Global Biodiversity Information Facility provides the largest single gateway to these data. Since 2004 it has provided a single point of access to specimen data from databases of biological surveys and collections. Biologists now have rapid access to more than 120 million observations, for use in many biological analyses. We investigate the quality and coverage of data digitally available, from the perspective of a biologist seeking distribution data for spatial analysis on a global scale. We present an example of automatic verification of geographic data using distributions from the International Legume Database and Information Service to test empirically, issues of geographic coverage and accuracy. There are over 1/2 million records covering 31% of all Legume species, and 84% of these records pass geographic validation. These data are not yet a global biodiversity resource for all species, or all countries. A user will encounter many biases and gaps in these data which should be understood before data are used or analyzed. The data are notably deficient in many of the worlds biodiversity hotspots. The deficiencies in data coverage can be resolved by an increased application of resources to digitize and publish data throughout these most diverse regions. But in the push to provide ever more data online, we should not forget that consistent data quality is of paramount importance if the data are to be useful in capturing a meaningful picture of life on Earth.


Ecology and Evolution | 2014

The future of the northeast Atlantic benthic flora in a high CO2 world

Juliet Brodie; Christopher Williamson; Dan Smale; Nicholas A. Kamenos; Rui Santos; Michael Cunliffe; Michael Steinke; Chris Yesson; Kathryn M. Anderson; Valentina Asnaghi; Colin Brownlee; Heidi L. Burdett; Michael T. Burrows; Sinéad Collins; Penelope J. C. Donohue; Ben P. Harvey; Andrew Foggo; Fanny Noisette; Joana Nunes; Federica Ragazzola; John A. Raven; Daniela N. Schmidt; David J. Suggett; Mirta Teichberg; Jason M. Hall-Spencer

Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.


BMC Evolutionary Biology | 2006

A phyloclimatic study of Cyclamen

Chris Yesson; Alastair Culham

BackgroundThe impact of global climate change on plant distribution, speciation and extinction is of current concern. Examining species climatic preferences via bioclimatic niche modelling is a key tool to study this impact. There is an established link between bioclimatic niche models and phylogenetic diversification. A next step is to examine future distribution predictions from a phylogenetic perspective. We present such a study using Cyclamen (Myrsinaceae), a group which demonstrates morphological and phenological adaptations to its seasonal Mediterranean-type climate. How will the predicted climate change affect future distribution of this popular genus of garden plants?ResultsWe demonstrate phylogenetic structure for some climatic characteristics, and show that most Cyclamen have distinct climatic niches, with the exception of several wide-ranging, geographically expansive, species. We reconstruct climate preferences for hypothetical ancestral Cyclamen. The ancestral Cyclamen lineage has a preference for the seasonal Mediterranean climate characteristic of dry summers and wet winters.Future bioclimatic niches, based on BIOCLIM and Maxent models, are examined with reference to a future climate scenario for the 2050s. Over the next 50 years we predict a northward shift in the area of climatic suitability, with many areas of current distribution becoming climatically unsuitable. The area of climatic suitability for every Cyclamen species is predicted to decrease. For many species, there may be no areas with a suitable climate regardless of dispersal ability, these species are considered to be at high risk of extinction. This risk is examined from a phylogenetic perspective.ConclusionExamining bioclimatic niches from a phylogenetic perspective permits novel interpretations of these models. In particular, reconstruction of ancestral niches can provide testable hypothesis about the historical development of lineages. In the future we can expect a northwards shift in climatic suitability for the genus Cyclamen. If this proves to be the case then dispersal is the best chance of survival, which seems highly unlikely for ant-dispersed Cyclamen. Human-assisted establishment of Cyclamen species well outside their native ranges offers hope and could provide the only means of dispersal to potentially suitable future environments. Even without human intervention the phylogenetic perspective demonstrates that major lineages could survive climate change even if many species are lost.


Cladistics | 2011

Molecular systematics of the Cactaceae

Rolando T. Bárcenas; Chris Yesson; Julie A. Hawkins

Bayesian, maximum‐likelihood, and maximum‐parsimony phylogenies, constructed using nucleotide sequences from the plastid gene region trnK‐matK, are employed to investigate relationships within the Cactaceae. These phylogenies sample 666 plants representing 532 of the 1438 species recognized in the family. All four subfamilies, all nine tribes, and 69% of currently recognized genera of Cactaceae are sampled. We found strong support for three of the four currently recognized subfamilies, although relationships between subfamilies were not well defined. Major clades recovered within the largest subfamilies, Opuntioideae and Cactoideae, are reviewed; only three of the nine currently accepted tribes delimited within these subfamilies, the Cacteae, Rhipsalideae, and Opuntieae, are monophyletic, although the Opuntieae were recovered in only the Bayesian and maximum‐likelihood analyses, not in the maximum‐parsimony analysis, and more data are needed to reveal the status of the Cylindropuntieae, which may yet be monophyletic. Of the 42 genera with more than one exemplar in our study, only 17 were monophyletic; 14 of these genera were from subfamily Cactoideae and three from subfamily Opuntioideae. We present a synopsis of the status of the currently recognized genera.
© The Willi Hennig Society 2011.


Marine Geodesy | 2012

Towards High-Resolution Habitat Suitability Modeling of Vulnerable Marine Ecosystems in the Deep-Sea: Resolving Terrain Attribute Dependencies

Anna M. Rengstorf; Anthony Grehan; Chris Yesson; Colin Brown

Recent habitat suitability models used to predict the occurrence of vulnerable marine species, particularly framework building cold-water corals, have identified terrain attributes such as slope and bathymetric position index as important predictive parameters. Due to their scale-dependent nature, a realistic representation of terrain attributes is crucial for the development of reliable habitat suitability models. In this paper, three known coral areas and a noncoral control area off the west coast of Ireland were chosen to assess quantitative and distributional differences between terrain attributes derived from bathymetry grids of varying resolution and information content. Correlation analysis identified consistent changes of terrain attributes as grain size was altered. Response characteristics and dimensions depended on terrain attribute types and the dominant morphological length-scales within the study areas. The subsequent effect on habitat suitability maps was demonstrated by preliminary models generated at different grain sizes. This study demonstrates that high resolution habitat suitability models based on terrain parameters derived from multibeam generated bathymetry are required to detect many of the topographical features found in Irish waters that are associated with coral. This has implications for marine spatial planning in the deep sea. Supplemental materials are available for this article. Go to the publishers online edition of Marine Geodesy to view the free supplemental file.


PLOS ONE | 2012

Past climate change and plant evolution in Western North America: a case study in Rosaceae.

Mats Töpel; Alexandre Antonelli; Chris Yesson; Bente Eriksen

Species in the ivesioid clade of Potentilla (Rosaceae) are endemic to western North America, an area that underwent widespread aridification during the global temperature decrease following the Mid-Miocene Climatic Optimum. Several morphological features interpreted as adaptations to drought are found in the clade, and many species occupy extremely dry habitats. Recent phylogenetic analyses have shown that the sister group of this clade is Potentilla section Rivales, a group with distinct moist habitat preferences. This has led to the hypothesis that the ivesioids (genera Ivesia, Horkelia and Horkeliella) diversified in response to the late Tertiary aridification of western North America. We used phyloclimatic modeling and a fossil-calibrated dated phylogeny of the family Rosaceae to investigate the evolution of the ivesioid clade. We have combined occurrence- and climate data from extant species, and used ancestral state reconstruction to model past climate preferences. These models have been projected into paleo-climatic scenarios in order to identify areas where the ivesioids may have occurred. Our analysis suggests a split between the ivesioids and Potentilla sect. Rivales around Late Oligocene/Early Miocene (∼23 million years ago, Ma), and that the ivesioids then diversified at a time when summer drought started to appear in the region. The clade is inferred to have originated on the western slopes of the Rocky Mountains from where a westward range expansion to the Sierra Nevada and the coast of California took place between ∼12-2 Ma. Our results support the idea that climatic changes in southwestern North America have played an important role in the evolution of the local flora, by means of in situ adaptation followed by diversification.


Molecular Ecology Resources | 2011

DNA barcodes for Mexican Cactaceae, plants under pressure from wild collecting

Chris Yesson; Rolando T. Bárcenas; Héctor M. Hernández; María De La Luz Ruiz-Maqueda; Alberto Prado; Víctor M. Rodríguez; Julie A. Hawkins

DNA barcodes could be a useful tool for plant conservation. Of particular importance is the ability to identify unknown plant material, such as from customs seizures of illegally collected specimens. Mexican cacti are an example of a threatened group, under pressure because of wild collection for the xeriscaping trade and private collectors. Mexican cacti also provide a taxonomically and geographically coherent group with which to test DNA barcodes. Here, we sample the matK barcode for 528 species of Cactaceae including approximately 75% of Mexican species and test the utility of the matK region for species‐level identification. We find that the matK DNA barcode can be used to identify uniquely 77% of species sampled, and 79–87% of species of particular conservation importance. However, this is far below the desired rate of 95% and there are significant issues for PCR amplification because of the variability of primer sites. Additionally, we test the nuclear ITS regions for the cactus subfamily Opuntioideae and for the genus Ariocarpus (subfamily Cactoideae). We observed higher rates of variation for ITS (86% unique for Opuntioideae sampled) but a much lower PCR success, encountering significant intra‐individual polymorphism in Ariocarpus precluding the use of this marker in this taxon. We conclude that the matK region should provide useful information as a DNA barcode for Cactaceae if the problems with primers can be addressed, but matK alone is not sufficiently variable to achieve species‐level identification. Additional complementary regions should be investigated as ITS is shown to be unsuitable.


Plant Systematics and Evolution | 2004

Phylogenetic Framework for Trema (Celtidaceae)

Chris Yesson; Stephen J. Russell; T. Parrish; James W. Dalling; N. C. Garwood

Abstract.We used ITS and trnL sequence data, analyzed separately and combined by MP, to explore species relationships and concepts in Trema (Celtidaceae), a pantropical genus of pioneer trees. Whether Trema is monophyletic or includes Parasponia is still unresolved. Three clades within Trema received moderate to high support, one from the New World and two from the Old World, but their relationships were not resolved. In the New World, specimens of T. micrantha formed two groups consistent with endocarp morphology. Group I, with smaller brown endocarps, is a highly supported clade sister to T. lamarckiana. Group II, with larger black endocarps, is poorly resolved with several subclades, including the highly supported T. integerrima clade. Both Old World clades contain Asian and African species, with three or more species in each region. Trema orientalis is not monophyletic: specimens from Africa formed a highly supported clade sister to T. africana, while those from Asia were sister to T. aspera from Australia.


Journal of the Marine Biological Association of the United Kingdom | 2015

The distribution and environmental requirements of large brown seaweeds in the British Isles

Chris Yesson; Laura E. Bush; Andrew J. Davies; Christine A. Maggs; Juliet Brodie

© Marine Biological Association of the United Kingdom 2015. Kelps, fucoids and other large brown seaweeds are common and important features of temperate coastal zones. The British Isles is a centre for seaweed diversity in the NE Atlantic, but, despite numerous surveys, an incomplete picture of the distribution remains. Survey data and herbarium specimens were used to examine the environmental preference of 15 species of large brown seaweeds, covering the orders Laminariales (kelps), Fucales (wracks) and one species of Tilopteridales. Habitat suitability models were developed to estimate broad-scale distribution and area of habitat created by these species around the British Isles. Topographic parameters were important factors limiting distributions. Generally, temperature did not appear to be a limiting factor, probably because the British Isles lies in the centre of the NE Atlantic distribution for most species, and not at climatic tolerance limits. However, for the recent migrant Laminaria ochroleuca, temperature was found to be important for the model, thus range expansion could continue northwards provided dispersal is possible. In contrast, the widespread Alaria esculenta showed a negative association with war mer summer temperatures. The total potential habitat around the British and Irish coastline is more than 19,000 km 2 for kelps and 11,000 km 2 for wracks, which represents a significant habitat area similar in scale to British broadleaf forest. We conclude that large brown algal species need to be managed and conserved in a manner that reflects their scale and importance.


Zoologica Scripta | 2012

Evolution of Nemertesia hydroids (Cnidaria: Hydrozoa, Plumulariidae) from the shallow and deep waters of the NE Atlantic and western Mediterranean

Carlos J. Moura; Marina R. Cunha; Filipe M. Porteiro; Chris Yesson; Alex D. Rogers

Moura, C. J., Cunha, M. R., Porteiro, F. M., Yesson, C. & Rogers, A. D. (2011) Evolution of Nemertesia hydroids (Cnidaria: Hydrozoa, Plumulariidae) from the shallow and deep waters of the NE Atlantic and Western Mediterranean. —Zoologica Scripta, 41, 79–96.

Collaboration


Dive into the Chris Yesson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juliet Brodie

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Grehan

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge