Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chrissa Kioussi is active.

Publication


Featured researches published by Chrissa Kioussi.


Neuron | 1995

Pax3: A paired domain gene as a regulator in PNS myelination

Chrissa Kioussi; Michael K. Gross; Peter Gruss

Pax3 RNA is expressed in neural crest when Schwann cell (SC) precursors migrate to the PNS. Pax3 RNA and SC markers were monitored in sciatic nerves of mice during development and nerve repair. An inverse correlation was observed between expression of Pax3 RNA and myelin basic protein (MBP). Inverse correlation was also observed in SC primary cultures. Treating cultures with forskolin, an adenylate cyclase agonist, repressed Pax3 RNA, GFAP, NGFR, N-CAM, and L1 and elevated MBP. Subsequent microinjection with Pax3 expression vector elevated Pax3 RNA, GFAP, NGFR, N-CAM, and L1 and repressed MBP. Thus, Pax3 is likely involved in the differentiation pathway to myelinating SCs. Pax3 repressed a 1.3 kb MBP promoter fragment in cotransfection assays, suggesting that it represses MBP transcription.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Cranial muscle defects of Pitx2 mutants result from specification defects in the first branchial arch

Hung Ping Shih; Michael K. Gross; Chrissa Kioussi

Pitx2 expression is observed during all states of the myogenic progression in embryonic muscle anlagen and persists in adult muscle. Pitx2 mutant mice form all but a few muscle anlagen. Loss or degeneration in muscle anlagen could generally be attributed to the loss of a muscle attachment site induced by some other aspect of the Pitx2 phenotype. Muscles derived from the first branchial arch were absent, whereas muscles derived from the second branchial arch were merely distorted in Pitx2 mutants at midgestation. Pitx2 was expressed well before, and was required for, initiation of the myogenic progression in the first, but not second, branchial arch mesoderm. Pitx2 was also required for expression of premyoblast specification markers Tbx1, Tcf21, and Msc in the first, but not second, branchial arch. First, but not second, arch mesoderm of Pitx2 mutants failed to enlarge after embryonic day 9.5, well before the onset of the myogenic progression. Thus, Pitx2 contributes to specification of first, but not second, arch mesoderm. The jaw of Pitx2 mutants was vestigial by midgestation, but significant size reductions were observed as early as embryonic day 10.5. The diminutive first branchial arch of mutants could not be explained by loss of mesoderm alone, suggesting that Pitx2 contributes to the earliest specification of jaw itself.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Ctip2/Bcl11b controls ameloblast formation during mammalian odontogenesis

Olga Golonzhka; Daniel Metzger; Jean-Marc Bornert; Brian K. Bay; Michael K. Gross; Chrissa Kioussi; Mark Leid

The transcription factor Ctip2/Bcl11b plays essential roles in developmental processes of the immune and central nervous systems and skin. Here we show that Ctip2 also plays a key role in tooth development. Ctip2 is highly expressed in the ectodermal components of the developing tooth, including inner and outer enamel epithelia, stellate reticulum, stratum intermedium, and the ameloblast cell lineage. In Ctip2−/− mice, tooth morphogenesis appeared to proceed normally through the cap stage but developed multiple defects at the bell stage. Mutant incisors and molars were reduced in size and exhibited hypoplasticity of the stellate reticulum. An ameloblast-like cell population developed ectopically on the lingual aspect of mutant lower incisors, and the morphology, polarization, and adhesion properties of ameloblasts on the labial side of these teeth were severely disrupted. Perturbations of gene expression were also observed in the mandible of Ctip2−/− mice: expression of the ameloblast markers amelogenin, ameloblastin, and enamelin was down-regulated, as was expression of Msx2 and epiprofin, transcription factors implicated in the tooth development and ameloblast differentiation. These results suggest that Ctip2 functions as a critical regulator of epithelial cell fate and differentiation during tooth morphogenesis.


Journal of Biological Chemistry | 2009

A Chicken Ovalbumin Upstream Promoter Transcription Factor I (COUP-TFI) Complex Represses Expression of the Gene Encoding Tumor Necrosis Factor α-induced Protein 8 (TNFAIP8)

Ling-juan Zhang; Xiao Liu; Philip R. Gafken; Chrissa Kioussi; Mark Leid

The orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) plays key roles in development and homeostasis. A tandem affinity purification procedure revealed that COUP-TFI associated with a number of transcriptional regulatory proteins in HeLa S3 cells, including the nuclear receptor corepressor (NCoR), TIF1β/KAP-1, HDAC1, and the SWI/SNF family member Brahma. The proapoptotic protein DBC1 was also identified in COUP-TFI complexes. In vitro experiments revealed that COUP-TFI interacted directly with NCoR but in a manner different from that of other nuclear receptors. DBC1 stabilized the interaction between COUP-TFI and NCoR by interacting directly with both proteins. The gene encoding the anti-apoptotic protein TNFAIP8 (tumor necrosis factor α (TNFα)-induced protein 8) was identified as being repressed by COUP-TFI in a manner that required several of the component proteins of the COUP-TFI complex. Finally, our studies highlight a central role for COUP-TFI in the induction of the TNFAIP8 promoter by TNFα. Together, these studies identify a novel COUP-TFI complex that functions as a repressor of transcription and may play a role in the TNFα signaling pathways.


Journal of Biological Chemistry | 2010

Pitx2-dependent Occupancy by Histone Deacetylases Is Associated with T-box Gene Regulation in Mammalian Abdominal Tissue

Traci L. Hilton; Michael K. Gross; Chrissa Kioussi

The homeodomain transcription factor Pitx2 and the T-box transcription factors are essential for organogenesis. Pitx2 and T-box genes are induced by growth factors and function as transcriptional activators or repressors. Gene expression analyses on abdominal tissue were used to identify seven of the T-box genes of the genome as Pitx2 target genes in the abdomen at embryonic day.10.5. Pitx2 activated Tbx4, Tbx15, and Mga and repressed Tbx1, Tbx2, Tbx5, and Tbx6 expression. As expected, activated genes showed reduced expression patterns, and repressed T-box genes showed increased expression patterns in the abdomen of Pitx2 mutants. Pitx2 occupied chromatin sites near all of these T-box genes. Co-occupancy by coactivators, corepressors, and histone acetylation at these sites was frequently Pitx2-dependent. Genes repressed by Pitx2 generally showed increased histone acetylation and decreased histone deacetylase (HDAC)/corepressor occupancy in Pitx2 mutants. The lower N-CoR, HDAC1, and HDAC3 occupancy observed at multiple sites along Tbx1 chromatin in mutants is consistent with the model that increased histone acetylation and gene expression of Tbx1 may result from a loss of recruitment of corepressors by Pitx2. Genes activated by Pitx2 showed less consistent patterns in chromatin analyses. Reduced H4 acetylation and increased HDAC1/nuclear receptor corepressor (N-CoR) occupancy at some Tbx4 sites were accompanied by increased H3 acetylation and reduced HDAC3 occupancy at the same or other more distal chromatin sites in mutants. Pitx2-dependent occupancy by corepressors resulted in alteration of the acetylation levels of several T-box genes, whereas Pitx2-dependent occupancy by coactivators was more site-localized. These studies will provide the basic scientific underpinning to understand abdominal wall syndromes.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Prediction of active nodes in the transcriptional network of neural tube patterning

Chrissa Kioussi; Hung-Ping Shih; John Loflin; Michael K. Gross

A transcriptional network governs patterning in the developing spinal cord. As the developmental program runs, the levels of sequence-specific DNA-binding transcription factors (SSTFs) in each progenitor cell type change to ultimately define a set of postmitotic populations with combinatorial codes of expressed SSTFs. A network description of the neural tube (NT) transcriptional patterning process will require definition of nodes (SSTFs and target enhancers) and edges (interactions between nodes). There are 1,600 SSTF nodes in a given mammalian genome. To limit the complexity of a network description, it will be useful to discriminate between active and passive SSTF nodes. We define active SSTF nodes as those that are differentially expressed within the system. Our system, the developing NT, was partitioned into two pools of genetically defined populations by using flow sorting. Microarray comparisons across the partition led to an estimate of 500–700 active SSTF nodes in the transcriptional network of the developing NT. These included most of the 66 known SSTFs assembled from review articles and recent reports on NT patterning. Empirical cutoffs based on the performance of knowns were used to identify 188 further active SSTFs nodes that performed similarly. The general utility and limitations of the population-partitioning paradigm are discussed.


International Scholarly Research Notices | 2013

Gene Networks during Skeletal Myogenesis

Diana Eng; Hsiao-Yen Ma; Michael K. Gross; Chrissa Kioussi

Mammalian skeletal muscles are derived from mesoderm segments flanking the embryonic midline. Upon receiving inductive cues from the adjacent neural tube, lateral plate mesoderm, and surface ectoderm, muscle precursors start to delaminate, migrate to their final destinations and proliferate. Muscle precursor cells become committed to the myogenic fate, become differentiated muscle cells, and fuse to form myofibers. Myofibers then fuse together to form the muscle groups. Muscle precursor cells have the ability to proliferate, and differentiate during development, while a subset remains capable of regeneration and repair of local injuries in adulthood. When the process of muscle development is perturbed such as in muscular dystrophies and injuries, ways to intervene and allow for proper muscle development or repair are the focus of regenerative medicine. Thus, understanding the developmental program of muscle at the genetic, cellular, and molecular levels has become a major focus of skeletal muscle regeneration research in the last few years.


Open Access Bioinformatics | 2014

Genome-wide mapping of chromatin state of mouse forelimbs

Diana Eng; Walter K. Vogel; Nicholas S. Flann; Michael K. Gross; Chrissa Kioussi

BACKGROUND Cell types are defined at the molecular level during embryogenesis by a process called pattern formation and created by the selective utilization of combinations of sequence specific transcription factors. Developmental programs define the sets of genes that are available to each particular cell type, and real-time biochemical signaling interactions define the extent to which these sets are used at any given time and place. Gene expression is regulated through the integrated action of many cis-regulatory elements, including core promoters, enhancers, silencers, and insulators. The chromatin state in developing body parts provides a code to cellular populations that direct their cell fates. Chromatin profiling has been a method of choice for mapping regulatory sequences in cells that go through developmental transitions. RESULTS We used antibodies against histone H3 lysine 4 trimethylations (H3K4me3) a modification associated with promoters and open/active chromatin, histone H3 lysine 27 trimethylations (H3K27me3) associated with Polycomb-repressed regions and RNA polymerase II (Pol2) associated with transcriptional initiation to identify the chromatin state signature of the mouse forelimb during mid-gestation, at embryonic day 12 (E12). The families of genes marked included those related to transcriptional regulation and embryogenesis. One third of the marked genes were transcriptionally active while only a small fraction were bivalent marked. Sequence specific transcription factors that were activated were involved in cell specification including bone and muscle formation. CONCLUSION Our results demonstrate that embryonic limb cells do not exhibit the plasticity of the ES cells but are rather programmed for a finer tuning for cell lineage specification.


Journal of Tissue Culture Methods | 1994

Double labeling of mRNA and protein markers in cultured embryoid bodies

Chrissa Kioussi; Gen Yamada

In vitro suspension cultures of embryonal carcinoma or embryonic stem cells (EC/ES) generate cell aggregates termed as embryoid bodies (EBs). EBs have been analyzed to study the mechanisms of cellular differentiation in vitro. The multipotency of EC/ES cells to differentiate into various cell types as well as the expression of many marker genes provides a valuable in vitro model system to study the mechanisms of cellular differentiation. Here we present a procedure for a mRNA detection of a specific gene using double labeling-mRNA probe and an antibody against cellular marker proteins. This double labeling analysis in combination with a culture of EBs provides a useful approach to analyze several mechanisms of cellular differentiation from multipotent EC/ES cells.


Annual Review of Genetics | 1994

Mammalian Pax Genes

Edward T. Stuart; Chrissa Kioussi; Peter Gruss

Collaboration


Dive into the Chrissa Kioussi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Eng

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Mark Leid

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hsiao-Yen Ma

Oregon State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge