Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chrissy h. Roberts is active.

Publication


Featured researches published by Chrissy h. Roberts.


Journal of Clinical Microbiology | 2013

Development and Evaluation of a Next-Generation Digital PCR Diagnostic Assay for Ocular Chlamydia trachomatis Infections

Chrissy h. Roberts; Sandra Molina-Gonzalez; Eunice Cassama; Robert Butcher; Meno Nabicassa; Elizabeth McCarthy; Sarah E. Burr; David Mabey; Robin L. Bailey; Martin J. Holland

ABSTRACT Droplet digital PCR (ddPCR) is an emulsion PCR process that performs absolute quantitation of nucleic acids. We developed a ddPCR assay for Chlamydia trachomatis infections and found it to be accurate and precise. Using PCR mixtures containing plasmids engineered to include the PCR target sequences, we were able to quantify with a dynamic range between 0.07 and 3,160 targets/μl (r 2 = 0.9927) with >95% confidence. Using 1,509 clinical conjunctival swab samples from a population in which trachoma is endemic in Guinea Bissau, we evaluated the specificity and sensitivity of the quantitative ddPCR assay in diagnosing ocular C. trachomatis infections by comparing the performances of ddPCR and the Roche Amplicor CT/NG test. We defined ddPCR tests as positive when we had ≥95% confidence in a nonzero estimate of target load. The sensitivity of ddPCR against Amplicor was 73.3% (95% confidence interval [CI], 67.9 to 78.7%), and specificity was 99.1% (95% CI, 98.6 to 99.6%). Negative and positive predictive values were 94.6% (95% CI, 93.4 to 95.8%) and 94.5% (95% CI, 91.3 to 97.7%), respectively. Based on Amplicor CT/NG testing, the estimated population prevalence of C. trachomatis ocular infection was ∼17.5%. Receiver-operator curve analysis was used to select critical cutoff values for use in clinical settings in which a balance between higher sensitivity and specificity is required. We concluded that ddPCR is an effective diagnostic technology suitable for both research and clinical use in diagnosing ocular C. trachomatis infections.


PLOS Neglected Tropical Diseases | 2009

Active Trachoma and Ocular Chlamydia trachomatis Infection in Two Gambian Regions: On Course for Elimination by 2020?

Emma M. Harding-Esch; Tansy Edwards; Ansumana Sillah; Isatou Sarr; Chrissy h. Roberts; Paul Snell; Esther A. N. Aryee; Sandra Molina; Martin J. Holland; David Mabey; Robin L. Bailey

Background Trachoma has been endemic in The Gambia for decades. National trachoma control activities have been in place since the mid-1980s, but with no mass antibiotic treatment campaign. We aimed to assess the prevalence of active trachoma and of actual ocular Chlamydia trachomatis infection as measured by polymerase chain reaction (PCR) in the two Gambian regions that had had the highest prevalence of trachoma in the last national survey in 1996 prior to planned national mass antibiotic treatment distribution in 2006. Methodology/Principal Findings Two stage random sampling survey in 61 randomly selected Enumeration Areas (EAs) in North Bank Region (NBR) and Lower River Region (LRR). Fifty randomly selected children aged under 10 years were examined per EA for clinical signs of trachoma. In LRR, swabs were taken to test for ocular C. trachomatis infection. Unadjusted prevalences of active trachoma were calculated, as would be done in a trachoma control programme. The prevalence of trachomatous inflammation, follicular (TF) in the 2777 children aged 1–9 years was 12.3% (95% CI 8.8%–17.0%) in LRR and 10.0% (95% CI 7.7%–13.0%) in NBR, with significant variation within divisions (p<0.01), and a design effect of 3.474. Infection with C. trachomatis was found in only 0.3% (3/940) of children in LRR. Conclusions/Significance This study shows a large discrepancy between the prevalence of trachoma clinical signs and ocular C. trachomatis infection in two Gambian regions. Assessment of trachoma based on clinical signs alone may lead to unnecessary treatment, since the prevalence of active trachoma remains high but C. trachomatis infection has all but disappeared. Assuming that repeated infection is required for progression to blinding sequelae, blinding trachoma is on course for elimination by 2020 in The Gambia.


Genome Medicine | 2014

The conjunctival microbiome in health and trachomatous disease: a case control study

Yanjiao Zhou; Martin J. Holland; Pateh Makalo; Hassan Joof; Chrissy h. Roberts; David Mabey; Robin L. Bailey; Matthew J. Burton; George M. Weinstock; Sarah E. Burr

BackgroundTrachoma, caused by Chlamydia trachomatis, remains the worlds leading infectious cause of blindness. Repeated ocular infection during childhood leads to scarring of the conjunctiva, in-turning of the eyelashes (trichiasis) and corneal opacity in later life. There is a growing body of evidence to suggest non-chlamydial bacteria are associated with clinical signs of trachoma, independent of C. trachomatis infection.MethodsWe used deep sequencing of the V1-V3 region of the bacterial 16S rRNA gene to characterize the microbiome of the conjunctiva of 220 residents of The Gambia, 105 with healthy conjunctivae and 115 with clinical signs of trachoma in the absence of detectable C. trachomatis infection. Deep sequencing was carried out using the Roche-454 platform. Sequence data were processed and analyzed through a pipeline developed by the Human Microbiome Project.ResultsThe microbiome of healthy participants was influenced by age and season of sample collection with increased richness and diversity seen in younger participants and in samples collected during the dry season. Decreased diversity and an increased abundance of Corynebacterium and Streptococcus were seen in participants with conjunctival scarring compared to normal controls. Abundance of Corynebacterium was higher still in adults with scarring and trichiasis compared to adults with scarring only.ConclusionsOur results indicate that changes in the conjunctival microbiome occur in trachomatous disease; whether these are a cause or a consequence is yet unknown.


Cancer Immunology, Immunotherapy | 2005

High frequency of homozygosity of the HLA region in melanoma cell lines reveals a pattern compatible with extensive loss of heterozygosity

Teresa Rodríguez; Rosa Méndez; Chrissy h. Roberts; Francisco Ruiz-Cabello; I. Anthony Dodi; Miguel Angel López Nevot; Laura Paco; Isabel Maleno; Steven G.E. Marsh; Graham Pawelec; Federico Garrido

Malignant transformation of cells is frequently associated with abnormalities in human leukocyte antigen (HLA) expression. MHC class I loss or down-regulation in cancer cells is a major immune escape route used by a large variety of human tumours to evade antitumour immune responses mediated by cytotoxic T lymphocytes. The goal of our study was to explore HLA genotyping and phenotyping in a variety of melanoma tumour cell lines. A total of 91 melanoma cell lines were characterised for HLA class I and II genotype. In addition, 61 out of the 91 cell lines were also analysed for HLA class I and II cell surface molecule expression by flow cytometry. Unexpectedly, we found that 19.7% of the melanoma cell lines were homozygous for HLA class I genotypes, sometimes associated with HLA class II homozygosity (8.79%) and sometimes not (10.98%). The frequency of homozygosity was significantly higher compared with the control groups (1.6%). To identify the reasons underlying the high frequency of HLA homozygosity we searched for genomic deletions using eight pairs of highly polymorphic microsatellite markers covering the entire extended HLA complex on the short arm of chromosome 6. Our results were compatible with hemizygous deletions and suggest that loss of heterozygosity on chromosome arm 6p is a common feature in melanoma cell lines. In fact, although autologous normal DNA from the patients was not available and could not be tested, the retention in some cases of heterozygosity for a number of microsatellite markers would indicate a hemizygous deletion. In the rest of the cases, markers at 6p and 6q showed a single allele pattern indicating the probable loss of part or the whole of chromosome 6. These results led us to conclude that loss of heterozygosity in chromosome 6 is nonrandom and is possibly an immunologically relevant event in human malignant melanoma. Other well-established altered HLA class I phenotypes were also detected by flow cytometry that correspond to HLA class I total loss and HLA-ABC and/or specific HLA-B locus down-regulation.


Journal of Clinical Microbiology | 2014

Plasmid copy number and disease severity in naturally occurring ocular Chlamydia trachomatis infection

Chrissy h. Roberts; Eunice Cassama; Meno Nabicassa; Sandra Molina-Gonzalez; Sarah E. Burr; David Mabey; Robin L. Bailey; Martin J. Holland

ABSTRACT The Chlamydia trachomatis plasmid is a virulence factor. Plasmid copy number, C. trachomatis load and disease severity were assessed in a treatment-naive population where trachoma is hyperendemic. By using droplet digital PCR, plasmid copy number was found to be stable (median, 5.34 [range, 1 to 18]) and there were no associations with C. trachomatis load or disease severity.


PLOS Neglected Tropical Diseases | 2013

Conjunctival MicroRNA Expression in Inflammatory Trachomatous Scarring

Tamsyn Derrick; Chrissy h. Roberts; Megha Rajasekhar; Sarah E. Burr; Hassan Joof; Pateh Makalo; Robin L. Bailey; David Mabey; Matthew J. Burton; Martin J. Holland

Purpose Trachoma is a fibrotic disease of the conjunctiva initiated by Chlamydia trachomatis infection. This blinding disease affects over 40 million people worldwide yet the mechanisms underlying its pathogenesis remain poorly understood. We have investigated host microRNA (miR) expression in health (N) and disease (conjunctival scarring with (TSI) and without (TS) inflammation) to determine if these epigenetic differences are associated with pathology. Methods We collected two independent samples of human conjunctival swab specimens from individuals living in The Gambia (n = 63 & 194). miR was extracted, and we investigated the expression of 754 miR in the first sample of 63 specimens (23 N, 17 TS, 23 TSI) using Taqman qPCR array human miRNA genecards. Network and pathway analysis was performed on this dataset. Seven miR that were significantly differentially expressed between different phenotypic groups were then selected for validation by qPCR in the second sample of 194 specimens (93 N, 74 TS, 22 TSI). Results Array screening revealed differential expression of 82 miR between N, TS and TSI phenotypes (fold change >3, p<0.05). Predicted mRNA targets of these miR were enriched in pathways involved in fibrosis and epithelial cell differentiation. Two miR were confirmed as being differentially expressed upon validation by qPCR. miR-147b is significantly up-regulated in TSI versus N (fold change = 2.3, p = 0.03) and miR-1285 is up-regulated in TSI versus TS (fold change = 4.6, p = 0.005), which was consistent with the results of the qPCR array. Conclusions miR-147b and miR-1285 are up-regulated in inflammatory trachomatous scarring. Further investigation of the function of these miR will aid our understanding of the pathogenesis of trachoma.


Genome Medicine | 2014

Killer-cell Immunoglobulin-like Receptor gene linkage and copy number variation analysis by droplet digital PCR

Chrissy h. Roberts; Wei Jiang; Jyothi Jayaraman; John Trowsdale; Martin J. Holland; James A. Traherne

The Killer-cell Immunoglobulin-like Receptor (KIR) gene complex has considerable biomedical importance. Patterns of polymorphism in the KIR region include variability in the gene content of haplotypes and diverse structural arrangements. Droplet digital PCR (ddPCR) was used to identify different haplotype motifs and to enumerate KIR copy number variants (CNVs). ddPCR detected a variety of KIR haplotype configurations in DNA from well-characterized cell lines. Mendelian segregation of ddPCR-estimated KIR2DL5 CNVs was observed in Gambian families and CNV typing of other KIRs was shown to be accurate when compared to an established quantitative PCR method.


International Journal of Immunogenetics | 2012

16th IHIW: Population Global Distribution of Killer Immunoglobulin-like Receptor (KIR) and Ligands

Jill A. Hollenbach; Danillo G. Augusto; Carmen Alaez; Ludmila Bubnova; Ingrid Faé; Gottfried F. Fischer; Faviel F. Gonzalez-Galarza; Clara Gorodezky; Lydia Karabon; Piotr Kusnierczyk; Janelle A. Noble; Olga Rickards; Chrissy h. Roberts; Marie Schaffer; Li Shi; Sofia Tavoularis; Elizabeth Trachtenberg; Y. Yao; Derek Middleton

In the last fifteen years, published reports have described KIR gene‐content frequency distributions in more than 120 populations worldwide. However, there have been limited studies examining these data in aggregate to detect overall patterns of variation at regional and global levels. Here, we present a summary of the collection of KIR gene‐content data for 105 worldwide populations collected as part of the 15th and 16th International Histocompatibility and Immunogenetics Workshops, and preliminary results for data analysis.


PLOS Neglected Tropical Diseases | 2016

Low Prevalence of Conjunctival Infection with Chlamydia trachomatis in a Treatment-Naïve Trachoma-Endemic Region of the Solomon Islands

Robert Butcher; Oliver Sokana; Kelvin Jack; Colin K. Macleod; Michael Marks; Eric Kalae; Leslie Sui; Charles Russell; Helena Tutill; Rachel Williams; Judith Breuer; Rebecca Willis; Richard Le Mesurier; David Mabey; Anthony W. Solomon; Chrissy h. Roberts

Background Trachoma is endemic in several Pacific Island states. Recent surveys across the Solomon Islands indicated that whilst trachomatous inflammation—follicular (TF) was present at levels warranting intervention, the prevalence of trachomatous trichiasis (TT) was low. We set out to determine the relationship between chlamydial infection and trachoma in this population. Methods We conducted a population-based trachoma prevalence survey of 3674 individuals from two Solomon Islands provinces. Participants were examined for clinical signs of trachoma. Conjunctival swabs were collected from all children aged 1–9 years. We tested swabs for Chlamydia trachomatis (Ct) DNA using droplet digital PCR. Chlamydial DNA from positive swabs was enriched and sequenced for use in phylogenetic analysis. Results We observed a moderate prevalence of TF in children aged 1–9 years (n = 296/1135, 26.1%) but low prevalence of trachomatous inflammation—intense (TI) (n = 2/1135, 0.2%) and current Ct infection (n = 13/1002, 1.3%) in children aged 1–9 years, and TT in those aged 15+ years (n = 2/2061, 0.1%). Ten of 13 (76.9%) cases of infection were in persons with TF or TI (p = 0.0005). Sequence analysis of the Ct-positive samples yielded 5/13 (38%) complete (>95% coverage of reference) genome sequences, and 8/13 complete plasmid sequences. Complete sequences all aligned most closely to ocular serovar reference strains. Discussion The low prevalence of TT, TI and Ct infection that we observed are incongruent with the high proportion of children exhibiting signs of TF. TF is present at levels that apparently warrant intervention, but the scarcity of other signs of trachoma indicates the phenotype is mild and may not pose a significant public health threat. Our data suggest that, whilst conjunctival Ct infection appears to be present in the region, it is present at levels that are unlikely to be the dominant driving force for TF in the population. This could be one reason for the low prevalence of TT observed during the study.


PLOS Neglected Tropical Diseases | 2014

Conjunctival Scarring in Trachoma Is Associated with the HLA-C Ligand of KIR and Is Exacerbated by Heterozygosity at KIR2DL2/KIR2DL3.

Chrissy h. Roberts; Sandra Molina; Pateh Makalo; Hassan Joof; Emma M. Harding-Esch; Sarah E. Burr; David Mabey; Robin L. Bailey; Matthew J. Burton; Martin J. Holland

Background Chlamydia trachomatis is globally the predominant infectious cause of blindness and one of the most common bacterial causes of sexually transmitted infection. Infections of the conjunctiva cause the blinding disease trachoma, an immuno-pathological disease that is characterised by chronic conjunctival inflammation and fibrosis. The polymorphic Killer-cell Immunoglobulin-like Receptors (KIR) are found on Natural Killer cells and have co-evolved with the Human Leucocyte Antigen (HLA) class I system. Certain genetic constellations of KIR and HLA class I polymorphisms are associated with a number of diseases in which modulation of the innate responses to viral and intracellular bacterial pathogens is central. Methodology A sample of 134 Gambian pedigrees selected to contain at least one individual with conjunctival scarring in the F1 generation was used. Individuals (n = 830) were genotyped for HLA class I and KIR gene families. Family Based Association Tests and Case Pseudo-control tests were used to extend tests for transmission disequilibrium to take full advantage of the family design, genetic model and phenotype. Principle findings We found that the odds of trachomatous scarring increased with the number of genome copies of HLA-C2 (C1/C2 OR = 2.29 BHP-value = 0.006; C2/C2 OR = 3.97 BHP-value = 0.0004) and further increased when both KIR2DL2 and KIR2DL3 (C2/C2 OR = 5.95 BHP-value = 0.006) were present. Conclusions To explain the observations in the context of chlamydial infection and trachoma we propose a two-stage model of response and disease that balances the cytolytic response of KIR expressing NK cells with the ability to secrete interferon gamma, a combination that may cause pathology. The data presented indicate that HLA-C genotypes are important determinants of conjunctival scarring in trachoma and that KIR2DL2/KIR2DL3 heterozygosity further increases risk of conjunctival scarring in individuals carrying HLA-C2.

Collaboration


Dive into the Chrissy h. Roberts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pateh Makalo

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Hassan Joof

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge