Christa Hestekin
University of Arkansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christa Hestekin.
International Journal of Molecular Sciences | 2012
N. Elizabeth Pryor; Melissa A. Moss; Christa Hestekin
The aggregation of proteins into insoluble amyloid fibrils coincides with the onset of numerous diseases. An array of techniques is available to study the different stages of the amyloid aggregation process. Recently, emphasis has been placed upon the analysis of oligomeric amyloid species, which have been hypothesized to play a key role in disease progression. This paper reviews techniques utilized to study aggregation of the amyloid-β protein (Aβ) associated with Alzheimers disease. In particular, the review focuses on techniques that provide information about the size or quantity of oligomeric Aβ species formed during the early stages of aggregation, including native-PAGE, SDS-PAGE, Western blotting, capillary electrophoresis, mass spectrometry, fluorescence correlation spectroscopy, light scattering, size exclusion chromatography, centrifugation, enzyme-linked immunosorbent assay, and dot blotting.
International Journal of Molecular Sciences | 2011
N. Elizabeth Pryor; Joseph A. Kotarek; Melissa A. Moss; Christa Hestekin
Early stages of insulin aggregation, which involve the transient formation of oligomeric aggregates, are an important aspect in the progression of Type II diabetes and in the quality control of pharmaceutical insulin production. This study is the first to utilize capillary electrophoresis (CE) with ultraviolet (UV) detection to monitor insulin oligomer formation at pH 8.0 and physiological ionic strength. The lag time to formation of the first detected species in the aggregation process was evaluated by UV-CE and thioflavin T (ThT) binding for salt concentrations from 100 mM to 250 mM. UV-CE had a significantly shorter (5–8 h) lag time than ThT binding (15–19 h). In addition, the lag time to detection of the first aggregated species via UV-CE was unaffected by salt concentration, while a trend toward an increased lag time with increased salt concentration was observed with ThT binding. This result indicates that solution ionic strength impacts early stages of aggregation and β-sheet aggregate formation differently. To observe whether CE may be applied for the analysis of biological samples containing low insulin concentrations, the limit of detection using UV and laser induced fluorescence (LIF) detection modes was determined. The limit of detection using LIF-CE, 48.4 pM, was lower than the physiological insulin concentration, verifying the utility of this technique for monitoring biological samples. LIF-CE was subsequently used to analyze the time course for fluorescein isothiocyanate (FITC)-labeled insulin oligomer formation. This study is the first to report that the FITC label prevented incorporation of insulin into oligomers, cautioning against the use of this fluorescent label as a tag for following early stages of insulin aggregation.
Electrophoresis | 2014
N. Elizabeth Pryor; Melissa A. Moss; Christa Hestekin
Aggregation of the amyloid‐β protein (Aβ) contributes to the neurodegeneration characteristic of Alzheimers disease. Of particular importance are the early stages of aggregation, which involve the formation of soluble oligomers and protofibrils. In these studies, we demonstrate the potential for CE with UV detection using a polyethylene oxide separation matrix to identify the evolution of various oligomeric species of Aβ1–40. To demonstrate the efficacy of this technique, UV‐CE was utilized to compare two methods commonly used to prepare Aβ for aggregation experiments and their effect on the formation of early aggregates. SEC‐purified Aβ1–40 initially contained more small species, including monomer, than did freshly dissolved Aβ1–40 pretreated with hexafluoroisopropanol. Strikingly, the lag time to oligomer formation for SEC‐isolated Aβ1–40 samples was ∼23 h shorter compared to freshly dissolved Aβ1–40 samples. Furthermore, oligomers formed from the aggregation of SEC‐purified Aβ1–40 persisted within solution for a longer period of time. These results indicate that the initial sample preparation has a drastic influence on the early stages of Aβ1–40 aggregation. This is the first report of the use of UV‐CE with a separation matrix to study the effect of sample preparation on early aggregation of Aβ1–40. UV‐CE was also used in parallel with dot blot analysis and inhibitory compounds to discern structural characteristics of individual oligomer peaks, demonstrating the capacity of UV‐CE as a complimentary technique to further understand the aggregation process.
Journal of Microbiological Methods | 2012
Sowmya Krothapalli; Michael K. May; Christa Hestekin
Drug resistant tuberculosis (TB) is a major health problem in both developed and developing countries. Mutations in the Mycobacterium (M.) tuberculosis bacterial genome, such as those to the rpoB gene and mabA-inhA promoter region, have been linked to TB drug resistance in against rifampicin and isoniazid, respectively. The rapid, accurate, and inexpensive identification of these and other mutations leading to TB drug resistance is an essential tool for improving human health. Capillary electrophoresis (CE) single strand conformation polymorphism (SSCP) can be a highly sensitive technique for the detection of genetic mutation that has not been previously explored for drug resistance mutations in M. tuberculosis. This work explores the potential of CE-SSCP through the optimization of variables such as polymer separation matrix concentration, capillary wall coating, electric field strength, and temperature on resolution of mutation detection. The successful detection of an rpoB gene mutation and two mabA-inhA promoter region mutations while simultaneously differentiating a TB-causing mycobacteria from a non-TB bacteria was accomplished using the optimum conditions of 4.5% (w/v) PDMA in a PDMA coated capillary at 20°C using a separation voltage of 278 V/cm. This multiplexed analysis that can be completed in a few hours demonstrates the potential of CE-SSCP to be an inexpensive and rapid analysis method.
Biomicrofluidics | 2016
Sadia Paracha; Christa Hestekin
Oligomeric forms of the amyloid beta (Aβ) protein have been indicated to be an important factor in the development of Alzheimers disease (AD). Since the oligomeric forms of Aβ can vary in size and conformation, it is vital to understand the early stages of Aβ aggregation in order to improve the care and treatment of patients with AD. This is the first study to determine the effect of field amplified sample stacking (FASS) on the separation of oligomeric forms of Aβ1-42 using capillary electrophoresis (CE) with ultraviolet (UV) detection. UV-CE was able to separate two different species of Aβ1-42 oligomers (<7 mers and 7-22 mers). Although FASS required the use of a higher ionic strength buffer, Aβ1-42 oligomers had the same aggregation behavior as under the non-FASS conditions with only small changes in the amounts of oligomers observed. In general, FASS provided smaller peak widths (>75% average reduction) and increased peak heights (>60% average increase) when compared to non-FASS conditions. UV-CE with FASS also provided higher resolution between the Aβ1-42 oligomers for all aggregation time points studied. In addition, Congo red and Orange G inhibition studies were used to help evaluate the conformation of the observed species. This work demonstrates the ability of UV-CE employing FASS to provide higher resolution between oligomeric forms of Aβ1-42 without significantly altering their aggregation.
Journal of Automated Methods & Management in Chemistry | 2015
Alice Jernigan; Christa Hestekin
Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP) was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green) and eukaryotic (green and brown) algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis), five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata), and one brown algae (Ectocarpus sp.) were examined and CE-SSCP electropherogram “fingerprints” were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred.
Environmental Progress | 2013
Alice Jernigan; Michael May; Thomas Potts; Brigitte Rodgers; Jamie Hestekin; Peter May; John McLaughlin; Robert R. Beitle; Christa Hestekin
Alzheimers & Dementia | 2014
Christa Hestekin; Jennifer Kurtz; Tammy Lutz-Rechtin
Archive | 2018
Jamie Hestekin; Christa Hestekin; Grace Ann C. Morrison; Sadia Paracha
Biophysical Journal | 2017
Steven Zebulon Vance; Xavier Redmon; Rachel Hall; Colman Moore; Gram Booth; Christa Hestekin; Melissa A. Moss