Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christa Schleper is active.

Publication


Featured researches published by Christa Schleper.


Nature | 2006

Archaea predominate among ammonia-oxidizing prokaryotes in soils.

Sven Leininger; Tim Urich; Michael Schloter; Lorenz Schwark; Ji Qi; Graeme W. Nicol; James I. Prosser; Stephan C. Schuster; Christa Schleper

Ammonia oxidation is the first step in nitrification, a key process in the global nitrogen cycle that results in the formation of nitrate through microbial activity. The increase in nitrate availability in soils is important for plant nutrition, but it also has considerable impact on groundwater pollution owing to leaching. Here we show that archaeal ammonia oxidizers are more abundant in soils than their well-known bacterial counterparts. We investigated the abundance of the gene encoding a subunit of the key enzyme ammonia monooxygenase (amoA) in 12 pristine and agricultural soils of three climatic zones. amoA gene copies of Crenarchaeota (Archaea) were up to 3,000-fold more abundant than bacterial amoA genes. High amounts of crenarchaeota-specific lipids, including crenarchaeol, correlated with the abundance of archaeal amoA gene copies. Furthermore, reverse transcription quantitative PCR studies and complementary DNA analysis using novel cloning-independent pyrosequencing technology demonstrated the activity of the archaea in situ and supported the numerical dominance of archaeal over bacterial ammonia oxidizers. Our results indicate that crenarchaeota may be the most abundant ammonia-oxidizing organisms in soil ecosystems on Earth.


Environmental Microbiology | 2008

The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.

Graeme W. Nicol; Sven Leininger; Christa Schleper; James I. Prosser

Autotrophic ammonia oxidation occurs in acid soils, even though laboratory cultures of isolated ammonia oxidizing bacteria fail to grow below neutral pH. To investigate whether archaea possessing ammonia monooxygenase genes were responsible for autotrophic nitrification in acid soils, the community structure and phylogeny of ammonia oxidizing bacteria and archaea were determined across a soil pH gradient (4.9-7.5) by amplifying 16S rRNA and amoA genes followed by denaturing gradient gel electrophoresis (DGGE) and sequence analysis. The structure of both communities changed with soil pH, with distinct populations in acid and neutral soils. Phylogenetic reconstructions of crenarchaeal 16S rRNA and amoA genes confirmed selection of distinct lineages within the pH gradient and high similarity in phylogenies indicated a high level of congruence between 16S rRNA and amoA genes. The abundance of archaeal and bacterial amoA gene copies and mRNA transcripts contrasted across the pH gradient. Archaeal amoA gene and transcript abundance decreased with increasing soil pH, while bacterial amoA gene abundance was generally lower and transcripts increased with increasing pH. Short-term activity was investigated by DGGE analysis of gene transcripts in microcosms containing acidic or neutral soil or mixed soil with pH readjusted to that of native soils. Although mixed soil microcosms contained identical archaeal ammonia oxidizer communities, those adapted to acidic or neutral pH ranges showed greater relative activity at their native soil pH. Findings indicate that different bacterial and archaeal ammonia oxidizer phylotypes are selected in soils of different pH and that these differences in community structure and abundances are reflected in different contributions to ammonia oxidizer activity. They also suggest that both groups of ammonia oxidizers have distinct physiological characteristics and ecological niches, with consequences for nitrification in acid soils.


Nature Reviews Microbiology | 2005

Genomic studies of uncultivated archaea

Christa Schleper; German Jurgens; Melanie Jonuscheit

Archaea represent a considerable fraction of the prokaryotic world in marine and terrestrial ecosystems, indicating that organisms from this domain might have a large impact on global energy cycles. However, many novel archaeal lineages that have been detected by molecular phylogenetic approaches have remained elusive because no laboratory-cultivated strains are available. Environmental genomic analyses have recently provided clues about the potential metabolic strategies of several of the uncultivated and abundant archaeal species, including non-thermophilic terrestrial and marine crenarchaeota and methanotrophic euryarchaeota. These initial studies of natural archaeal populations also revealed an unexpected degree of genomic variation that indicates considerable heterogeneity among archaeal strains. Here, we review genomic studies of uncultivated archaea within a framework of the phylogenetic diversity and ecological distribution of this domain.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil

Maria Tourna; Michaela Stieglmeier; Anja Spang; Martin Könneke; Arno Schintlmeister; Tim Urich; Marion Engel; Michael Schloter; Michael Wagner; Andreas Richter; Christa Schleper

Genes of archaea encoding homologues of ammonia monooxygenases have been found on a widespread basis and in large amounts in almost all terrestrial and marine environments, indicating that ammonia oxidizing archaea (AOA) might play a major role in nitrification on Earth. However, only one pure isolate of this group from a marine environment has so far been obtained, demonstrating archaeal ammonia oxidation coupled with autotrophic growth similar to the bacterial counterparts. Here we describe the cultivation and isolation of an AOA from soil. It grows on ammonia or urea as an energy source and is capable of using higher ammonia concentrations than the marine isolate, Nitrosopumilus maritimus. Surprisingly, although it is able to grow chemolithoautotrophically, considerable growth rates of this strain are obtained only upon addition of low amounts of pyruvate or when grown in coculture with bacteria. Our findings expand the recognized metabolic spectrum of AOA and help explain controversial results obtained in the past on the activity and carbon assimilation of these globally distributed organisms.


PLOS ONE | 2008

Simultaneous Assessment of Soil Microbial Community Structure and Function through Analysis of the Meta-Transcriptome

Tim Urich; Anders Lanzén; Ji Qi; Daniel H. Huson; Christa Schleper; Stephan C. Schuster

Background Soil ecosystems harbor the most complex prokaryotic and eukaryotic microbial communities on Earth. Experimental approaches studying these systems usually focus on either the soil communitys taxonomic structure or its functional characteristics. Many methods target DNA as marker molecule and use PCR for amplification. Methodology/Principal Findings Here we apply an RNA-centered meta-transcriptomic approach to simultaneously obtain information on both structure and function of a soil community. Total community RNA is random reversely transcribed into cDNA without any PCR or cloning step. Direct pyrosequencing produces large numbers of cDNA rRNA-tags; these are taxonomically profiled in a binning approach using the MEGAN software and two specifically compiled rRNA reference databases containing small and large subunit rRNA sequences. The pyrosequencing also produces mRNA-tags; these provide a sequence-based transcriptome of the community. One soil dataset of 258,411 RNA-tags of ∼98 bp length contained 193,219 rRNA-tags with valid taxonomic information, together with 21,133 mRNA-tags. Quantitative information about the relative abundance of organisms from all three domains of life and from different trophic levels was obtained in a single experiment. Less frequent taxa, such as soil Crenarchaeota, were well represented in the data set. These were identified by more than 2,000 rRNA-tags; furthermore, their activity in situ was revealed through the presence of mRNA-tags specific for enzymes involved in ammonia oxidation and CO2 fixation. Conclusions/Significance This approach could be widely applied in microbial ecology by efficiently linking community structure and function in a single experiment while avoiding biases inherent in other methods.


Trends in Microbiology | 2010

Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota

Anja Spang; Roland Hatzenpichler; Céline Brochier-Armanet; Thomas Rattei; Patrick Tischler; Eva Spieck; Wolfgang R. Streit; David A. Stahl; Michael Wagner; Christa Schleper

Globally distributed archaea comprising ammonia oxidizers of moderate terrestrial and marine environments are considered the most abundant archaeal organisms on Earth. Based on 16S rRNA phylogeny, initial assignment of these archaea was to the Crenarchaeota. By contrast, features of the first genome sequence from a member of this group suggested that they belong to a novel phylum, the Thaumarchaeota. Here, we re-investigate the Thaumarchaeota hypothesis by including two newly available genomes, that of the marine ammonia oxidizer Nitrosopumilus maritimus and that of Nitrososphaera gargensis, a representative of another evolutionary lineage within this group predominantly detected in terrestrial environments. Phylogenetic studies based on r-proteins and other core genes, as well as comparative genomics, confirm the assignment of these organisms to a separate phylum and reveal a Thaumarchaeota-specific set of core informational processing genes, as well as potentially ancestral features of the archaea.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum

Steven J. Hallam; Konstantinos T. Konstantinidis; Nik Putnam; Christa Schleper; Yoh-ichi Watanabe; Junichi Sugahara; Christina M. Preston; José R. de la Torre; Paul M. Richardson; Edward F. DeLong

Crenarchaeota are ubiquitous and abundant microbial constituents of soils, sediments, lakes, and ocean waters. To further describe the cosmopolitan nonthermophilic Crenarchaeota, we analyzed the genome sequence of one representative, the uncultivated sponge symbiont Cenarchaeum symbiosum. C. symbiosum genotypes coinhabiting the same host partitioned into two dominant populations, corresponding to previously described a- and b-type ribosomal RNA variants. Although they were syntenic, overlapping a- and b-type ribotype genomes harbored significant variability. A single tiling path comprising the dominant a-type genotype was assembled and used to explore the genomic properties of C. symbiosum and its planktonic relatives. Of 2,066 ORFs, 55.6% matched genes with predicted function from previously sequenced genomes. The remaining genes partitioned between functional RNAs (2.4%) and hypotheticals (42%) with limited homology to known functional genes. The latter category included some genes likely involved in the archaeal–sponge symbiotic association. Conversely, 525 C. symbiosum ORFs were most highly similar to sequences from marine environmental genomic surveys, and they apparently represent orthologous genes from free-living planktonic Crenarchaeota. In total, the C. symbiosum genome was remarkably distinct from those of other known Archaea and shared many core metabolic features in common with its free-living planktonic relatives.


Current Opinion in Microbiology | 2011

The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology

Michael Pester; Christa Schleper; Michael Wagner

Thaumarchaeota range among the most abundant archaea on Earth. Initially classified as ‘mesophilic Crenarchaeota’, comparative genomics has recently revealed that they form a separate and deep-branching phylum within the Archaea. This novel phylum comprises in 16S rRNA gene trees not only all known archaeal ammonia oxidizers but also several clusters of environmental sequences representing microorganisms with unknown energy metabolism. Ecophysiological studies of ammonia-oxidizing Thaumarchaeota suggest adaptation to low ammonia concentrations and an autotrophic or possibly mixotrophic lifestyle. Extrapolating from the wide substrate range of copper-containing membrane-bound monooxygenases, to which the thaumarchaeal ammonia monooxygenases belong, the use of substrates other than ammonia for generating energy by some members of the Thaumarchaeota seems likely.


Environmental Microbiology | 2009

Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils.

Kristina Schauss; Andreas Focks; Sven Leininger; Anja Kotzerke; Holger Heuer; Sören Thiele-Bruhn; Shilpi Sharma; Berndt-Michael Wilke; Michael Matthies; Kornelia Smalla; Jean Charles Munch; Wulf Amelung; Martin Kaupenjohann; Michael Schloter; Christa Schleper

Crucial steps in geochemical cycles are in many cases performed by more than one group of microorganisms, but the significance of this functional redundancy with respect to ecosystem functioning is poorly understood. Ammonia-oxidizing archaea (AOA) and their bacterial counterparts (AOB) are a perfect system to address this question: although performing the same transformation step, they belong to well-separated phylogenetic groups. Using pig manure amended with different concentrations of sulfadiazine (SDZ), an antibiotic that is frequently used in veterinary medicine, it was possible to affect AOB and AOA to different degrees. Addition of manure stimulated growth of AOB in both soils and, interestingly, also growth of AOA was considerably stimulated in one of the soils. The antibiotic treatments decreased the manure effect notably on AOB, whereas AOA were affected to a lower extent. Model calculations concerning the respective proportions of AOA and AOB in ammonia oxidation indicate a substantial contribution of AOA in one of the soils that further increased under the influence of SDZ, hence indicating functional redundancy between AOA and AOB.


Molecular Microbiology | 2003

Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics

Achim Quaiser; Torsten Ochsenreiter; Christa Lanz; Stephan C. Schuster; Alexander H. Treusch; Jürgen Eck; Christa Schleper

Acidobacteria have been established as a novel phylum of Bacteria that is consistently detected in many different habitats around the globe by 16S rDNA‐based molecular surveys. The phylogenetic diversity, ubiquity and abundance of this group, particularly in soil habitats, suggest an important ecological role and extensive metabolic versatility. However, the genetic and physiological information about Acidobacteria is scarce. In order to gain insight into genome structure, evolution and diversity of these microorganisms we have initiated an environmental genomic approach by constructing large insert libraries directly from DNA of a calcerous grassland soil. Genomic fragments of Acidobacteria were identified with specific 16S rDNA probes and sequence analyses of six independently identified clones were performed, representing in total more than 210 000 bp. The 16S rRNA genes of the genomic fragments differed between 2.3% and 19.9% and were placed into two different subgroups of Acidobacteria (groups III and V). Although partial co‐linearity was found between genomic fragments, the gene content around the rRNA operons was generally not conserved. Phylogenetic reconstructions with orthologues that were encoded on two of the six genomic fragments (PurF, PurL, PurB and formamidopyrimidine‐DNA glycosylase) confirmed the coherence of the acidobacterial phylum. One genomic fragment harboured a cluster of eight genes which was syntenic and highly homologous to genomic regions in Rhodopseudomonas palustris and Bradyrhizobium japonicum, including a conserved two‐component system. Phylogenetic analysis of the putative response regulator confirmed that this similarity between Rhizobiales and Acidobacteria might be due to a horizontal gene transfer. In total, our data give first insight into the genome content and diversity of the ubiquitously distributed but poorly characterized phylum of Acidobacteria. Furthermore they support the phylogenetic inferences made from 16S rRNA gene libraries, suggesting that Acidobacteria form a broad group in the same sense and with a similar diversity as that of many well‐studied bacterial phyla.

Collaboration


Dive into the Christa Schleper's collaboration.

Top Co-Authors

Avatar

Tim Urich

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward F. DeLong

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander H. Treusch

Technische Universität Darmstadt

View shared research outputs
Researchain Logo
Decentralizing Knowledge