Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christel Depienne is active.

Publication


Featured researches published by Christel Depienne.


PLOS Genetics | 2009

Sporadic Infantile Epileptic Encephalopathy Caused by Mutations in PCDH19 Resembles Dravet Syndrome but Mainly Affects Females

Christel Depienne; Delphine Bouteiller; Boris Keren; Emmanuel Cheuret; Karine Poirier; Oriane Trouillard; Baya Benyahia; Chloé Quélin; Wassila Carpentier; Sophie Julia; Alexandra Afenjar; Agnès Gautier; François Rivier; Sophie Meyer; Patrick Berquin; Marie Hélias; Isabelle Py; Serge Rivera; Nadia Bahi-Buisson; Isabelle Gourfinkel-An; Cécile Cazeneuve; Merle Ruberg; Alexis Brice; Rima Nabbout; Eric LeGuern

Dravet syndrome (DS) is a genetically determined epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene. Since 2003, we have performed molecular analyses in a large series of patients with DS, 27% of whom were negative for mutations or rearrangements in SCN1A. In order to identify new genes responsible for the disorder in the SCN1A-negative patients, 41 probands were screened for micro-rearrangements with Illumina high-density SNP microarrays. A hemizygous deletion on chromosome Xq22.1, encompassing the PCDH19 gene, was found in one male patient. To confirm that PCDH19 is responsible for a Dravet-like syndrome, we sequenced its coding region in 73 additional SCN1A-negative patients. Nine different point mutations (four missense and five truncating mutations) were identified in 11 unrelated female patients. In addition, we demonstrated that the fibroblasts of our male patient were mosaic for the PCDH19 deletion. Patients with PCDH19 and SCN1A mutations had very similar clinical features including the association of early febrile and afebrile seizures, seizures occurring in clusters, developmental and language delays, behavioural disturbances, and cognitive regression. There were, however, slight but constant differences in the evolution of the patients, including fewer polymorphic seizures (in particular rare myoclonic jerks and atypical absences) in those with PCDH19 mutations. These results suggest that PCDH19 plays a major role in epileptic encephalopathies, with a clinical spectrum overlapping that of DS. This disorder mainly affects females. The identification of an affected mosaic male strongly supports the hypothesis that cellular interference is the pathogenic mechanism.


Journal of Medical Genetics | 2008

Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients

Christel Depienne; Oriane Trouillard; Cécile Saint-Martin; Isabelle Gourfinkel-An; Delphine Bouteiller; Wassila Carpentier; Boris Keren; B Abert; Agnès Gautier; Stéphanie Baulac; A Arzimanoglou; Cécile Cazeneuve; Rima Nabbout; Eric LeGuern

Introduction: Mutations in the voltage-gated sodium channel SCN1A gene are the main genetic cause of Dravet syndrome (previously called severe myoclonic epilepsy of infancy or SMEI). Objective: To characterise in more detail the mutation spectrum associated with Dravet syndrome. Methods: A large series of 333 patients was screened using both direct sequencing and multiplex ligation-dependent probe amplification (MLPA). Non-coding regions of the gene that are usually not investigated were also screened. Results: SCN1A point mutations were identified in 228 patients, 161 of which had not been previously reported. Missense mutations, either (1) altering a highly conserved amino acid of the protein, (2) transforming this conserved residue into a chemically dissimilar amino acid and/or (3) belonging to ion-transport sequences, were the most common mutation type. MLPA analysis of the 105 patients without point mutation detected a heterozygous microrearrangement of SCN1A in 14 additional patients; 8 were private, partial deletions and six corresponded to whole gene deletions, 0.15–2.9 Mb in size, deleting nearby genes. Finally, mutations in exon 5N and in untranslated regions of the SCN1A gene that were conserved during evolution were excluded in the remaining negative patients. Conclusion: These findings widely expand the SCN1A mutation spectrum identified and highlight the importance of screening the coding regions with both direct sequencing and a quantitative method. This mutation spectrum, including whole gene deletions, argues in favour of haploinsufficiency as the main mechanism responsible for Dravet syndrome.


PLOS Genetics | 2014

Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments

Claire S. Leblond; Caroline Nava; Anne Polge; Julie Gauthier; Guillaume Huguet; Serge Lumbroso; Fabienne Giuliano; Coline Stordeur; Christel Depienne; Kevin Mouzat; Dalila Pinto; Jennifer L. Howe; Nathalie Lemière; Christelle M. Durand; Jessica Guibert; Elodie Ey; Roberto Toro; Hugo Peyre; Alexandre Mathieu; Frédérique Amsellem; Maria Råstam; I. Carina Gillberg; Gudrun Rappold; Richard Holt; Anthony P. Monaco; Elena Maestrini; Pilar Galan; Delphine Héron; Aurélia Jacquette; Alexandra Afenjar

SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability—more than 1 in 50—warrant its consideration for mutation screening in clinical practice.


Current Opinion in Neurology | 2007

Hereditary spastic paraplegias: an update.

Christel Depienne; Giovanni Stevanin; Alexis Brice; Alexandra Durr

Purpose of reviewHereditary spastic paraplegias are a genetically heterogeneous group of diseases. Recent advances concerning their nosology and molecular bases have greatly improved the genetic diagnosis of these diseases, with implications for genetic counselling. The recent identification of new genes and loci, however, has blurred the distinction between hereditary spastic paraplegias and other entities, such as cerebellar ataxias or leucodystrophies. Cerebral MRI and the familial history of each patient with spastic paraplegia are the minimal clinical elements needed to orient genetic testing. Recent findingsFor SPG4, the gene most frequently involved in hereditary spastic paraplegias, a novel mutational mechanism was described, which allows detection of an increased number of cases. In autosomal recessive forms, mutations in the recently identified SPG11 gene seem to account for a majority of the complex forms of the disease with atrophy of the corpus callosum. In addition, the SACS gene has been implicated in an increasing number of cases of various origins. SummaryGenetic testing is progressively more complex and clinical and other information concerning the phenotype is now crucial for choosing an appropriate genetic testing procedure for each patient.


The Journal of Neuroscience | 2007

Annonacin, a Natural Mitochondrial Complex I Inhibitor, Causes Tau Pathology in Cultured Neurons

Myriam Escobar-Khondiker; Matthias Höllerhage; Marie-Paule Muriel; Pierre Champy; Antoine Bach; Christel Depienne; Gesine Respondek; Elizabeth Sumi Yamada; Annie Lannuzel; Takao Yagi; Etienne C. Hirsch; Wolfgang H. Oertel; Ralf Jacob; Patrick P. Michel; Merle Ruberg; Günter U. Höglinger

A neurodegenerative tauopathy endemic to the Caribbean island of Guadeloupe has been associated with the consumption of anonaceous plants that contain acetogenins, potent lipophilic inhibitors of complex I of the mitochondrial respiratory chain. To test the hypothesis that annonacin, a prototypical acetogenin, contributes to the etiology of the disease, we investigated whether annonacin affects the cellular distribution of the protein tau. In primary cultures of rat striatal neurons treated for 48 h with annonacin, there was a concentration-dependent decrease in ATP levels, a redistribution of tau from the axons to the cell body, and cell death. Annonacin induced the retrograde transport of mitochondria, some of which had tau attached to their outer membrane. Taxol, a drug that displaces tau from microtubules, prevented the somatic redistribution of both mitochondria and tau but not cell death. Antioxidants, which scavenged the reactive oxygen species produced by complex I inhibition, did not affect either the redistribution of tau or cell death. Both were prevented, however, by forced expression of the NDI1 nicotinamide adenine dinucleotide (NADH)-quinone-oxidoreductase of Saccharomyces cerevisiae, which can restore NADH oxidation in complex I-deficient mammalian cells and stimulation of energy production via anaerobic glycolysis. Consistently, other ATP-depleting neurotoxins (1-methyl-4-phenylpyridinium, 3-nitropropionic, and carbonyl cyanide m-chlorophenylhydrazone) reproduced the somatic redistribution of tau, whereas toxins that did not decrease ATP levels did not cause the redistribution of tau. Therefore, the annonacin-induced ATP depletion causes the retrograde transport of mitochondria to the cell soma and induces changes in the intracellular distribution of tau in a way that shares characteristics with some neurodegenerative diseases.


American Journal of Human Genetics | 2012

Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia

Christelle Tesson; Magdalena Nawara; Mustafa A. Salih; Rodrigue Rossignol; Maha S. Zaki; Mohammed Al Balwi; Rebecca Schüle; Cyril Mignot; Emilie Obre; Ahmed Bouhouche; Filippo M. Santorelli; Christelle M. Durand; Andrés Caballero Oteyza; Khalid H. El-Hachimi; Abdulmajeed Al Drees; Naima Bouslam; Foudil Lamari; Salah A. Elmalik; Mohammad M. Kabiraj; Mohammed Z. Seidahmed; Typhaine Esteves; Marion Gaussen; Marie Lorraine Monin; Gabor Gyapay; Doris Lechner; Michael Gonzalez; Christel Depienne; Fanny Mochel; Julie Lavie; Ludger Schöls

Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function.


Biological Psychiatry | 2009

Screening for Genomic Rearrangements and Methylation Abnormalities of the 15q11-q13 Region in Autism Spectrum Disorders

Christel Depienne; Daniel Moreno-De-Luca; Delphine Héron; Delphine Bouteiller; Aurélie Gennetier; Richard Delorme; Pauline Chaste; Jean-Pierre Siffroi; Sandra Chantot-Bastaraud; Baya Benyahia; Oriane Trouillard; Gudrun Nygren; Svenny Kopp; Maria Johansson; Maria Råstam; Lydie Burglen; Eric LeGuern; Alain Verloes; Marion Leboyer; Alexis Brice; Christopher Gillberg; Catalina Betancur

BACKGROUND Maternally derived duplications of the 15q11-q13 region are the most frequently reported chromosomal aberrations in autism spectrum disorders (ASD). Prader-Willi and Angelman syndromes, caused by 15q11-q13 deletions or abnormal methylation of imprinted genes, are also associated with ASD. However, the prevalence of these disorders in ASD is unknown. The aim of this study was to assess the frequency of 15q11-q13 rearrangements in a large sample of patients ascertained for ASD. METHODS A total of 522 patients belonging to 430 families were screened for deletions, duplications, and methylation abnormalities involving 15q11-q13 with multiplex ligation-dependent probe amplification (MLPA). RESULTS We identified four patients with 15q11-q13 abnormalities: a supernumerary chromosome 15, a paternal interstitial duplication, and two subjects with Angelman syndrome, one with a maternal deletion and the other with a paternal uniparental disomy. CONCLUSIONS Our results show that abnormalities of the 15q11-q13 region are a significant cause of ASD, accounting for approximately 1% of cases. Maternal interstitial 15q11-q13 duplications, previously reported to be present in 1% of patients with ASD, were not detected in our sample. Although paternal duplications of chromosome 15 remain phenotypically silent in the majority of patients, they can give rise to developmental delay and ASD in some subjects, suggesting that paternally expressed genes in this region can contribute to ASD, albeit with reduced penetrance compared with maternal duplications. These findings indicate that patients with ASD should be routinely screened for 15q genomic imbalances and methylation abnormalities and that MLPA is a reliable, rapid, and cost-effective method to perform this screening.


Neurology | 2015

The phenotypic spectrum of SCN8A encephalopathy.

Jan Larsen; Gemma L. Carvill; Elena Gardella; Gerhard Kluger; Gudrun Schmiedel; Nina Barišić; Christel Depienne; Eva H. Brilstra; Yuan Mang; J. E. K. Nielsen; Martin Kirkpatrick; David Goudie; Rebecca Goldman; Johanna A. Jähn; Birgit Jepsen; Deepak Gill; Miriam Döcker; Saskia Biskup; Jacinta M. McMahon; Bobby P. C. Koeleman; Mandy Harris; Kees P. J. Braun; Carolien G.F. de Kovel; Carla Marini; Nicola Specchio; Tania Djémié; Sarah Weckhuysen; Niels Tommerup; M. Troncoso; L. Troncoso

Objective: SCN8A encodes the sodium channel voltage-gated α8-subunit (Nav1.6). SCN8A mutations have recently been associated with epilepsy and neurodevelopmental disorders. We aimed to delineate the phenotype associated with SCN8A mutations. Methods: We used high-throughput sequence analysis of the SCN8A gene in 683 patients with a range of epileptic encephalopathies. In addition, we ascertained cases with SCN8A mutations from other centers. A detailed clinical history was obtained together with a review of EEG and imaging data. Results: Seventeen patients with de novo heterozygous mutations of SCN8A were studied. Seizure onset occurred at a mean age of 5 months (range: 1 day to 18 months); in general, seizures were not triggered by fever. Fifteen of 17 patients had multiple seizure types including focal, tonic, clonic, myoclonic and absence seizures, and epileptic spasms; seizures were refractory to antiepileptic therapy. Development was normal in 12 patients and slowed after seizure onset, often with regression; 5 patients had delayed development from birth. All patients developed intellectual disability, ranging from mild to severe. Motor manifestations were prominent including hypotonia, dystonia, hyperreflexia, and ataxia. EEG findings comprised moderate to severe background slowing with focal or multifocal epileptiform discharges. Conclusion: SCN8A encephalopathy presents in infancy with multiple seizure types including focal seizures and spasms in some cases. Outcome is often poor and includes hypotonia and movement disorders. The majority of mutations arise de novo, although we observed a single case of somatic mosaicism in an unaffected parent.


Journal of Medical Genetics | 2007

Exon Deletions of SPG4 are a Frequent Cause of Hereditary Spastic Paraplegia

Christel Depienne; Estelle Fedirko; Sylvie Forlani; Cécile Cazeneuve; Pascale Ribai; Imed Feki; Chantal Tallaksen; Karine Nguyen; Bruno Stankoff; Merle Ruberg; Giovanni Stevanin; Alexandra Durr; Alexis Brice

Background: Point mutations in SPG4, the gene encoding spastin, are a frequent cause of autosomal dominant hereditary spastic paraplegia (AD-HSP). However, standard methods for genetic analyses fail to detect exonic microdeletions. Methods: 121 mutation-negative probands were screened for rearrangements in SPG4 by multiplex ligation-dependent probe amplification. Results: 24 patients with 16 different heterozygotic exon deletions in SPG4 (20%) were identified, ranging from one exon to the whole coding sequence. Comparison with 78 patients with point mutations showed a similar clinical picture but an earlier age at onset. Conclusions: Exon deletions in SPG4 are as frequent as point mutations, and SPG4 is responsible for 40% of AD-HSP.


Neurology | 2006

SPG3A is the most frequent cause of hereditary spastic paraplegia with onset before age 10 years

M. Namekawa; Pascale Ribai; Isabelle Nelson; Sylvie Forlani; F. Fellmann; Cyril Goizet; Christel Depienne; Giovanni Stevanin; M. Ruberg; Alexandra Durr; Alexis Brice

Seven families with six different SPG3A mutations were identified among 106 with autosomal dominant hereditary spastic paraplegia (HSP). Two mutations were novel (T162P, C375R). SPG3A was twice as frequent as SPG4 in patients with onset before age 10 years (31.8%). Later onset was not observed. The phenotype was pure HSP, but disease duration was longer than in non-SPG3A/SPG4 patients, leading ultimately to greater handicap.

Collaboration


Dive into the Christel Depienne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric LeGuern

Saint Joseph University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oriane Trouillard

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge