Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christelle Boileau is active.

Publication


Featured researches published by Christelle Boileau.


Best Practice & Research: Clinical Rheumatology | 2008

Cartilage in normal and osteoarthritis conditions.

Johanne Martel-Pelletier; Christelle Boileau; Jean-Pierre Pelletier; Peter J. Roughley

The preservation of articular cartilage depends on keeping the cartilage architecture intact. Cartilage strength and function depend on both the properties of the tissue and on their structural parameters. The main structural macromolecules are collagen and proteoglycans (aggrecan). During life, cartilage matrix turnover is mediated by a multitude of complex autocrine and paracrine anabolic and catabolic factors. These act on the chondrocytes and can lead to repair, remodeling or catabolic processes like those that occur in osteoarthritis. Osteoarthritis is characterized by degradation and loss of articular cartilage, subchondral bone remodeling, and, at the clinical stage of the disease, inflammation of the synovial membrane. The alterations in osteoarthritic cartilage are numerous and involve morphologic and metabolic changes in chondrocytes, as well as biochemical and structural alterations in the extracellular matrix macromolecules.


Osteoarthritis and Cartilage | 2008

Histone deacetylase inhibitors suppress interleukin-1β-induced nitric oxide and prostaglandin E2 production in human chondrocytes

N. Chabane; N. Zayed; Hassan Afif; Leandra Mfuna-Endam; Mohamed Benderdour; Christelle Boileau; Johanne Martel-Pelletier; J.-P. Pelletier; Nicolas Duval; Hassan Fahmi

OBJECTIVE Overproduction of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) plays an important role in the pathogenesis of osteoarthritis (OA). In the present study, we determined the effect of trichostatin A (TSA) and butyric acid (BA), two histone deacetylase (HDAC) inhibitors, on NO and PGE(2) synthesis, inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 expression, and nuclear factor (NF)-kappaB DNA-binding activity, in interleukin-1beta (IL-1)-stimulated human OA chondrocytes, and on IL-1-induced proteoglycan degradation in cartilage explants. METHODS Chondrocytes were stimulated with IL-1 in the absence or presence of increasing concentrations of TSA or BA. The production of NO and PGE(2) was evaluated using Griess reagent and an enzyme immunoassay, respectively. The expression of iNOS and COX-2 proteins and mRNAs was evaluated using Western blotting and real-time reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. Proteoglycan degradation was measured with dimethymethylene blue assay. Electrophoretic mobility shift assay (EMSA) was utilized to analyze the DNA-binding activity of NF-kappaB. RESULTS HDAC inhibition with TSA or BA resulted in a dose-dependent inhibition of IL-1-induced NO and PGE(2) production. IL-17- and tumor necrosis factor-alpha (TNF-alpha)-induced NO and PGE(2) production was also inhibited by TSA and BA. This inhibition correlated with the suppression of iNOS and COX-2 protein and mRNA expression. TSA and BA also prevented IL-1-induced proteoglycan release from cartilage explants. Finally, we demonstrate that the DNA-binding activity of NF-kappaB, was induced by IL-1, but was not affected by treatment with HDAC inhibitors. CONCLUSIONS These data indicate that HDAC inhibitors suppressed IL-1-induced NO and PGE(2) synthesis, iNOS and COX-2 expression, as well as proteoglycan degradation. The suppressive effect of HDAC inhibitors is not due to impaired DNA-binding activity of NF-kappaB. These findings also suggest that HDAC inhibitors may be of potential therapeutic value in the treatment of OA.


Arthritis Research & Therapy | 2009

Protective effects of total fraction of avocado/soybean unsaponifiables on the structural changes in experimental dog osteoarthritis: inhibition of nitric oxide synthase and matrix metalloproteinase-13

Christelle Boileau; Johanne Martel-Pelletier; Judith Caron; Philippe Msika; Georges Bernard Guillou; Caroline Baudouin; Jean-Pierre Pelletier

IntroductionThe aims of this study were, first, to investigate the in vivo effects of treatment with avocado/soybean unsaponifiables on the development of osteoarthritic structural changes in the anterior cruciate ligament dog model and, second, to explore their mode of action.MethodsOsteoarthritis was induced by anterior cruciate ligament transection of the right knee in crossbred dogs. There were two treatment groups (n = 8 dogs/group), in which the animals received either placebo or avocado/soybean unsaponifiables (10 mg/kg per day), which were given orally for the entire duration of the study (8 weeks). We conducted macroscopic and histomorphological analyses of cartilage and subchondral bone of the femoral condyles and/or tibial plateaus. We also conducted immunohistochemical analyses in cartilage for the following antigens: inducible nitric oxide synthase, matrix metalloproteinase (MMP)-1, MMP-13, a disintegrin and metalloproteinase domain with thrombospondin motifs (ADAMTS)4 and ADAMTS5.ResultsThe size of macroscopic lesions on the tibial plateaus was decreased (P = 0.04) in dogs treated with the avocado/soybean unsaponifiables. Histologically, in these animals the severity of cartilage lesions on both tibial plateaus and femoral condyles, and the cellular infiltration in synovium were significantly decreased (P = 0.0002 and P = 0.04, respectively). Treatment with avocado/soybean unsaponifiables also reduced loss of subchondral bone volume (P < 0.05) and calcified cartilage thickness (P = 0.01) compared with placebo. Immunohistochemical analysis of cartilage revealed that avocado/soybean unsaponifiables significantly reduced the level of inducible nitric oxide synthase (P < 0.05) and MMP-13 (P = 0.01) in cartilage.ConclusionsThis study demonstrates that treatment with avocado/soybean unsaponifiables can reduce the development of early osteoarthritic cartilage and subchondral bone lesions in the anterior cruciate ligament dog model of osteoarthritis. This effect appears to be mediated through the inhibition of inducible nitric oxide synthase and MMP-13, which are key mediators of the structural changes that take place in osteoarthritis.


Rheumatology | 2009

Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis

Steeve Kwan Tat; Nathalie Amiable; Jean-Pierre Pelletier; Christelle Boileau; Daniel Lajeunesse; Nicolas Duval; Johanne Martel-Pelletier

OBJECTIVES Earlier studies suggest the involvement of osteoprotegerin (OPG), RANK and RANK ligand (RANKL) in OA subchondral bone metabolism; however, few studies have looked at their functional consequences on chondrocytes. We compared the expression/production of OPG, RANK and RANKL on human normal and OA chondrocytes, and evaluated, on OA chondrocytes, their modulation by some catabolic factors. Furthermore, the role of OPG and RANKL on the production of catabolic/anabolic factors was assessed. METHODS Expression was determined using real-time PCR, production of RANK and RANKL by flow cytometry and that of OPG by ELISA. Modulation of these factors was determined upon treatment with IL-1beta, TNF-alpha and PGE(2). The functional consequences were examined following treatment with soluble RANKL or OPG-Fc (OPG without the heparin-binding domain). RESULTS OPG, RANK and RANKL were expressed and produced by human chondrocytes. Membranous RANK was produced only by an OA chondrocyte subpopulation (29%) localized throughout the cartilage. The OPG/RANKL ratio was significantly (P = 0.05) reduced on the OA chondrocytes, whereas the RANK/RANKL ratio was significantly (P < 0.03) increased. OPG and membranous RANKL levels were significantly enhanced by IL-1beta, TNF-alpha and PGE(2), whereas membranous RANK was significantly increased only with IL-1beta. Administration of soluble RANKL had no effect on the OA chondrocytes. However, addition of OPG-Fc significantly stimulated MMP-13 (P = 0.05) and protease-activated receptor-2 (PAR-2) (P < 0.04) production. CONCLUSIONS Our findings showed that human chondrocytes express and produce OPG, RANK and RANKL. OA chondrocyte treatment with catabolic factors pointed towards an increased biological effect of OPG. Interestingly, OPG appears to be involved in OA progression by increasing two catabolic factors involved in cartilage pathophysiology.


Arthritis Research & Therapy | 2005

The protective effect of licofelone on experimental osteoarthritis is correlated with the downregulation of gene expression and protein synthesis of several major cartilage catabolic factors: MMP-13, cathepsin K and aggrecanases

Jean-Pierre Pelletier; Christelle Boileau; Martin Boily; Julie Brunet; François Mineau; Changshen Geng; Pascal Reboul; Stefan Laufer; Daniel Lajeunesse; Johanne Martel-Pelletier

This study sought to evaluate the levels of mRNA expression and protein synthesis of MMP-13, cathepsin K, aggrecanase-1 (ADAMTS-4), aggrecanase-2 (ADAMTS-5) and 5-lipoxygenase (5-LOX) in cartilage in the experimental anterior cruciate ligament (ACL) dog model of osteoarthritis (OA), and to examine the effects of treatment with licofelone, a 5-lipoxygenase (LOX)/cyclooxygenase (COX) inhibitor, on the levels of these catabolic factors. Sectioning of the ACL of the right knee was performed in three experimental groups: group 1 received no active treatment (placebo group); and groups 2 and 3 received therapeutic concentrations of licofelone (2.5 or 5.0 mg/kg/day orally, respectively) for 8 weeks, beginning the day following surgery. A fourth group consisted of untreated dogs that were used as normal controls. Specimens of cartilage were selected from lesional areas of OA femoral condyles and tibial plateaus, and were processed for real-time quantitative PCR and immunohistochemical analyses. The levels of MMP-13, cathepsin K, ADAMTS-4, ADAMTS-5 and 5-LOX were found to be significantly increased in OA cartilage. Licofelone treatment decreased the levels of both mRNA expression and protein synthesis of the factors studied. Of note was the marked reduction in the level of 5-LOX gene expression. The effects of the drug were about the same at both tested dosages. In vivo treatment with therapeutic dosages of licofelone has been found to reduce the degradation of OA cartilage in experimental OA. This, coupled with the results of the present study, indicates that the effects of licofelone are mediated by the inhibition of the major cartilage catabolic pathways involved in the destruction of cartilage matrix macromolecules. Moreover, our findings also indicate the possible auto-regulation of 5-LOX gene expression by licofelone in OA cartilage.


Arthritis Research & Therapy | 2007

Activation of proteinase-activated receptor 2 in human osteoarthritic cartilage upregulates catabolic and proinflammatory pathways capable of inducing cartilage degradation: a basic science study

Christelle Boileau; Nathalie Amiable; Johanne Martel-Pelletier; Hassan Fahmi; Nicolas Duval; Jean-Pierre Pelletier

Proteinase-activated receptors (PARs) belong to a family of G protein-coupled receptors. PARs are activated by a serine-dependent cleavage generating a tethered activating ligand. PAR-2 was shown to be involved in inflammatory pathways. We investigated the in situ levels and modulation of PAR-2 in human normal and osteoarthritis (OA) cartilage/chondrocytes. Furthermore, we evaluated the role of PAR-2 on the synthesis of the major catabolic factors in OA cartilage, including metalloproteinase (MMP)-1 and MMP-13 and the inflammatory mediator cyclooxygenase 2 (COX-2), as well as the PAR-2-activated signalling pathways in OA chondrocytes. PAR-2 expression was determined using real-time reverse transcription-polymerase chain reaction and protein levels by immunohistochemistry in normal and OA cartilage. Protein modulation was investigated in OA cartilage explants treated with a specific PAR-2-activating peptide (PAR-2-AP), SLIGKV-NH2 (1 to 400 μM), interleukin 1 beta (IL-1β) (100 pg/mL), tumor necrosis factor-alpha (TNF-α) (5 ng/mL), transforming growth factor-beta-1 (TGF-β1) (10 ng/mL), or the signalling pathway inhibitors of p38 (SB202190), MEK1/2 (mitogen-activated protein kinase kinase) (PD98059), and nuclear factor-kappa B (NF-κB) (SN50), and PAR-2 levels were determined by immunohistochemistry. Signalling pathways were analyzed on OA chondrocytes by Western blot using specific phospho-antibodies against extracellular signal-regulated kinase 1/2 (Erk1/2), p38, JNK (c-jun N-terminal kinase), and NF-κB in the presence or absence of the PAR-2-AP and/or IL-1β. PAR-2-induced MMP and COX-2 levels in cartilage were determined by immunohistochemistry. PAR-2 is produced by human chondrocytes and is significantly upregulated in OA compared with normal chondrocytes (p < 0.04 and p < 0.03, respectively). The receptor levels were significantly upregulated by IL-1β (p < 0.006) and TNF-α (p < 0.002) as well as by the PAR-2-AP at 10, 100, and 400 μM (p < 0.02) and were downregulated by the inhibition of p38. After 48 hours of incubation, PAR-2 activation significantly induced MMP-1 and COX-2 starting at 10 μM (both p < 0.005) and MMP-13 at 100 μM (p < 0.02) as well as the phosphorylation of Erk1/2 and p38 within 5 minutes of incubation (p < 0.03). Though not statistically significant, IL-1β produced an additional effect on the activation of Erk1/2 and p38. This study documents, for the first time, functional consequences of PAR-2 activation in human OA cartilage, identifies p38 as the major signalling pathway regulating its synthesis, and demonstrates that specific PAR-2 activation induces Erk1/2 and p38 in OA chondrocytes. These results suggest PAR-2 as a potential new therapeutic target for the treatment of OA.


Annals of the Rheumatic Diseases | 2008

Magnetic resonance imaging can accurately assess the long-term progression of knee structural changes in experimental dog osteoarthritis

Christelle Boileau; Johanne Martel-Pelletier; F. Abram; Jean-Pierre Raynauld; Eric Troncy; Marc-André d'Anjou; Maxim Moreau; Jean-Pierre Pelletier

Objectives: Osteoarthritis (OA) structural changes take place over decades in humans. MRI can provide precise and reliable information on the joint structure and changes over time. In this study, we investigated the reliability of quantitative MRI in assessing knee OA structural changes in the experimental anterior cruciate ligament (ACL) dog model of OA. Methods: OA was surgically induced by transection of the ACL of the right knee in five dogs. High resolution three dimensional MRI using a 1.5 T magnet was performed at baseline, 4, 8 and 26 weeks post surgery. Cartilage volume/thickness, cartilage defects, trochlear osteophyte formation and subchondral bone lesion (hypersignal) were assessed on MRI images. Animals were killed 26 weeks post surgery and macroscopic evaluation was performed. Results: There was a progressive and significant increase over time in the loss of knee cartilage volume, the cartilage defect and subchondral bone hypersignal. The trochlear osteophyte size also progressed over time. The greatest cartilage loss at 26 weeks was found on the tibial plateaus and in the medial compartment. There was a highly significant correlation between total knee cartilage volume loss or defect and subchondral bone hypersignal, and also a good correlation between the macroscopic and the MRI findings. Conclusion: This study demonstrated that MRI is a useful technology to provide a non-invasive and reliable assessment of the joint structural changes during the development of OA in the ACL dog model. The combination of this OA model with MRI evaluation provides a promising tool for the evaluation of new disease-modifying osteoarthritis drugs (DMOADs).


Arthritis & Rheumatism | 2008

Activation of the receptor EphB4 by its specific ligand ephrin B2 in human osteoarthritic subchondral bone osteoblasts.

Steeve Kwan Tat; Jean-Pierre Pelletier; Nathalie Amiable; Christelle Boileau; Daniel Lajeunesse; Nicolas Duval; Johanne Martel-Pelletier

OBJECTIVE Abnormal subchondral bone metabolism is involved in osteoarthritis (OA). It has been suggested that ephrin B2 and its specific receptor EphB4 participate in bone homeostasis. We previously reported that human OA subchondral bone osteoblasts could be classified into 2 subpopulations: low (L), having proresorption properties, and high (H), having proformation properties. The purpose of this study was to investigate the importance of the ephrin system in OA subchondral bone osteoblasts. METHODS The presence of the EphB4 receptor was determined by immunohistochemistry, and its expression level, modulation upon treatment, and consequences of activation by ephrin B2 were determined by quantitative polymerase chain reaction. The effects of ephrin B2 activation of the EphB4 receptor on bone resorption activity were also determined. EphB4 receptor activation signaling pathways were investigated by specific enzyme-linked immunosorbent assay. RESULTS EphB4 receptors were present in subchondral bone osteoblasts and osteocytes. Compared with normal and H-OA osteoblasts, EphB4 receptor expression levels were significantly increased in L-OA osteoblasts, with no difference between normal and H-OA osteoblasts. EphB4 receptor levels in L-OA osteoblasts were significantly up-regulated by prostaglandin E2 (PGE2) and interleukin-17 (IL-17). Ephrin B2, PGE2, and IL-17 significantly inhibited bone resorption activity in these cells. EphB4 activation by ephrin B2 significantly inhibited the expression of IL-1beta, IL-6, matrix metalloproteinase 1 (MMP-1), MMP-9, MMP-13, and RANKL, but not MMP-2 and osteoprotegerin. EphB4 receptor activation significantly inhibited the phosphatidylinositol 3-kinase/Akt pathway. CONCLUSION This study is the first to provide evidence that EphB4 receptor activation by ephrin B2 in OA subchondral bone could affect abnormal metabolism in this tissue by inhibiting resorption factors and their activities. Ephrin B2 could be targeted as a specific therapeutic approach in the development of a disease-modifying OA drug.


Bone | 2009

Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts

Nathalie Amiable; Steeve Kwan Tat; Daniel Lajeunesse; Nicolas Duval; Jean-Pierre Pelletier; Johanne Martel-Pelletier; Christelle Boileau

INTRODUCTION In osteoarthritis (OA), the subchondral bone undergoes a remodelling process involving several factors synthesized by osteoblasts. In this study, we investigated the expression, production, modulation, and role of PAR-2 in human OA subchondral bone osteoblasts. MATERIALS AND METHODS PAR-2 expression and production were determined by real-time PCR and flow cytometry, respectively. PAR-2 modulation was investigated in OA subchondral bone osteoblasts treated with IL-1 beta (100 pg/ml), TNF-alpha (5 ng/ml), TGF-beta1 (10 ng/ml), PGE(2) (500 nM), IL-6 (10 ng/ml) and IL-17 (10 ng/ml). Membranous RANKL protein was assessed by flow cytometry, and OPG, MMP-1, MMP-9, MMP-13, IL-6 and intracellular signalling pathways by specific ELISAs. Bone resorptive activity was measured by using a co-culture model of human PBMC and OA subchondral bone osteoblasts. RESULTS PAR-2 expression and production (p<0.05) were markedly increased when human OA subchondral bone osteoblasts were compared to normal. On OA osteoblasts, PAR-2 production was significantly increased by IL-1 beta, TNF-alpha and PGE(2). Activation of PAR-2 with a specific agonist, SLIGKV-NH(2), induced a significant up-regulation of MMP-1, MMP-9, IL-6, and membranous RANKL, but had no effect on MMP-13 or OPG production. Interestingly, bone resorptive activity was also significantly enhanced following PAR-2 activation. The PAR-2 effect was mediated by activation of the MAP kinases Erk1/2 and JNK. CONCLUSION This study is the first to demonstrate that PAR-2 activation plays a role in OA subchondral bone resorption via an up-regulation of major bone remodelling factors. These results shed new light on the potential of PAR-2 as a therapeutic target in OA.


Osteoarthritis and Cartilage | 2008

Identification of opticin, a member of the small leucine-rich repeat proteoglycan family, in human articular tissues : a novel target for MMP-13 in osteoarthritis

Jordi Monfort; Ginette Tardif; Peter J. Roughley; Pascal Reboul; Christelle Boileau; Paul N. Bishop; J.-P. Pelletier; Johanne Martel-Pelletier

OBJECTIVE One of the proteoglycan families is the small leucine-rich proteoglycans (SLRPs) that are characterized by their association with collagen fibrils and/or some glycosaminoglycans. Opticin is a glycoprotein and class III member of the SLRP family, which was initially identified in the vitreous humour of the eye. In this study, we first investigated whether opticin is expressed and produced in normal and OA human articular tissues/cells. Further, we investigated the ability of the key metalloprotease involved in cartilage pathology, MMP-13, to cleave human cartilage opticin. METHODS Opticin gene expression was investigated in normal and OA human chondrocytes, synovial fibroblasts, and subchondral bone osteoblasts by reverse transcriptase-polymerase chain reaction (RT-PCR). Opticin protein production was determined in normal and OA synovial membrane and cartilage by immunohistochemistry. Opticin was isolated from human cartilage using guanidinium chloride extraction, and human MMP-13-induced opticin degradation analyzed by Western blotting. Finally, the opticin MMP-13 cleavage site was determined. RESULTS Opticin was expressed in human chondrocytes, synovial fibroblasts and subchondral osteoblasts, and the protein identified in synovial membrane and cartilage. At the protein level, OA cartilage showed a slightly higher level of opticin positive stained chondrocytes than normal cartilage; this did not reach statistical significance. However, in contrast with OA, normal cartilage demonstrated a high level of matrix staining in the superficial zone of the tissue, suggesting that in the OA cartilage matrix, opticin is degraded. Data also showed that cartilage opticin could be cleaved by MMP-13 after only 2h of incubation, indicating a preferential substrate compared to other SLRPs for this enzyme. Microsequencing revealed a major cleavage site at the G(104)/L(105)LAAP and a minor at P(109)/A(110)NHPG upon MMP-13 exposure. CONCLUSION We demonstrated, for the first time, that opticin is expressed and produced in human articular tissues. Our data also showed that opticin in OA cartilage is degraded in a process that could be mediated by MMP-13. As opticin may contribute towards the structural stability of cartilage, its cleavage by MMP-13 may predispose cartilage to degeneration, particularly at the surface.

Collaboration


Dive into the Christelle Boileau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ginette Tardif

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Nicolas Duval

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Reboul

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Maxim Moreau

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Eric Troncy

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Julie Brunet

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge