Christelle Briois
University of Orléans
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christelle Briois.
Science | 2015
Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; Jean-Jacques Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; P. Eberhardt; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Annette Jäckel; Ernest Kopp; A. Korth; L. Leroy; U. Mall; Bernard Marty; Olivier Mousis; Eddy Neefs; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia-Yu Tzou
The provenance of water and organic compounds on Earth and other terrestrial planets has been discussed for a long time without reaching a consensus. One of the best means to distinguish between different scenarios is by determining the deuterium-to-hydrogen (D/H) ratios in the reservoirs for comets and Earth’s oceans. Here, we report the direct in situ measurement of the D/H ratio in the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer aboard the European Space Agency’s Rosetta spacecraft, which is found to be (5.3 ± 0.7) × 10−4—that is, approximately three times the terrestrial value. Previous cometary measurements and our new finding suggest a wide range of D/H ratios in the water within Jupiter family objects and preclude the idea that this reservoir is solely composed of Earth ocean–like water.
Science | 2015
Myrtha Hässig; Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; J. J. Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; J. De Keyser; P. Eberhardt; Björn Fiethe; S. A. Fuselier; M. Galand; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Annette Jäckel; H. U. Keller; Ernest Kopp; A. Korth; E. Kührt; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Eddy Neefs; Tobias Owen; H. Rème
Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.
Astronomy and Astrophysics | 2015
Léna Le Roy; Kathrin Altwegg; H. Balsiger; J. J. Berthelier; André Bieler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; Johan De Keyser; Frederik Dhooghe; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Myrtha Hässig; Annette Jäckel; Martin Rubin; Chia-Yu Tzou
The ESA Rosetta spacecraft (S/C) is tracking comet 67P/Churyumov-Gerasimenko in close vicinity. This prolonged en- counter enables studying the evolution of the volatile coma composition. Aims. Our work aims at comparing the diversity of the coma of 67P/Churyumov-Gerasimenko at large heliocentric distance to study the evolution of the comet during its passage around the Sun and at trying to classify it relative to other comets. Methods. We used the Double Focussing Mass Spectrometer (DFMS) of the ROSINA experiment on ESA’s Rosetta mission to determine relative abundances of major and minor volatile species. This study is restricted to species that have previously been detected elsewhere. Results. We detect almost all species currently known to be present in cometary coma with ROSINA DFMS. As DFMS measured the composition locally, we cannot derive a global abundance, but we compare measurements from the summer and the winter hemisphere with known abundances from other comets. Differences between relative abundances between summer and winter hemispheres are large, which points to a possible evolution of the cometary surface. This comet appears to be very rich in CO2 and ethane. Heavy oxygenated compounds such as ethylene glycol are underabundant at 3 AU, probably due to their high sublimation temperatures, but nevertheless, their presence proves that Kuiper belt comets also contain complex organic molecules.
Science Advances | 2016
Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; J. J. Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; H. Cottin; Johan De Keyser; Frederik Dhooghe; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Haessig; Annette Jäckel; Ernest Kopp; A. Korth; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia Yu Tzou
The detection of glycine and phosphorus in the coma of 67P shows that comets contain all ingredients to help spark life on Earth. The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the 13C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth.
The Astrophysical Journal | 2016
Martin Hilchenbach; J. Kissel; Yves Langevin; Christelle Briois; H. von Hoerner; Andreas Koch; R. Schulz; Johan Silen; Kathrin Altwegg; L. Colangeli; H. Cottin; C. Engrand; Henning Fischer; Albrecht Glasmachers; E. Grün; Gerhard Haerendel; H. Henkel; H. Höfner; Klaus Hornung; Elmar K. Jessberger; Harry J. Lehto; Kirsi Lehto; F. Raulin; L. Le Roy; Jouni Rynö; W. Steiger; Thomas G. Stephan; Laurent Thirkell; R. Thomas; K. Torkar
The COmetary Secondary Ion Mass Analyser instrument on board ESAs Rosetta mission has collected dust particles in the coma of comet 67P/Churyumov-Gerasimenko. During the early-orbit phase of the Rosetta mission, particles and particle agglomerates have been imaged and analyzed in the inner coma at distances between 100 km and 10 km off the cometary nucleus and at more than 3 AU from the Sun. We identified 585 particles of more than 14 μm in size. The particles are collected at low impact speeds and constitute a sample of the dust particles in the inner coma impacting and fragmenting on the targets. The sizes of the particles range from 14 μm up to sub-millimeter sizes and the differential dust flux size distribution is fitted with a power law exponent of -3.1. After impact, the larger particles tend to stick together, spread out or consist of single or a group of clumps, and the flocculent morphology of the fragmented particles is revealed. The elemental composition of the dust particles is heterogeneous and the particles could contain typical silicates like olivine and pyroxenes, as well as iron sulfides. The sodium to iron elemental ratio is enriched with regard to abundances in CI carbonaceous chondrites by a factor from ˜1.5 to ˜15. No clear evidence for organic matter has been identified. The composition and morphology of the collected dust particles appear to be similar to that of interplanetary dust particles.
Nature | 2016
Nicolas Fray; Anais Bardyn; H. Cottin; Kathrin Altwegg; Donia Baklouti; Christelle Briois; L. Colangeli; C. Engrand; Henning Fischer; Albrecht Glasmachers; E. Grün; Gerhard Haerendel; Hartmut Henkel; H. Höfner; Klaus Hornung; Elmar K. Jessberger; Andreas Koch; Harald Krüger; Yves Langevin; Harry J. Lehto; Kirsi Lehto; Léna Le Roy; S. Merouane; Paola Modica; F.-R. Orthous-Daunay; John Paquette; F. Raulin; Jouni Rynö; R. Schulz; Johan Silen
The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula—the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov–Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites’ parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.
Science Advances | 2015
H. Balsiger; Kathrin Altwegg; Akiva Bar-Nun; Jean-Jacques Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; Johan De Keyser; P. Eberhardt; Björn Fiethe; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Annette Jäckel; Ernest Kopp; A. Korth; Léna Le Roy; U. Mall; Bernard Marty; Olivier Mousis; Tobias Owen; H. Rème; Martin Rubin; Thierry Sémon; Chia-Yu Tzou; J. Hunter Waite
ROSINA/DFMS shows that comets of type 67P/CG likely did not significantly contribute to Earth’s volatile budget. Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope 36Ar and by the 36Ar/38Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth’s major volatiles.
Planetary and Space Science | 2014
Olivier Mousis; Leigh N. Fletcher; J. P Lebreton; Peter Wurz; T. Cavalié; Athena Coustenis; R Courtin; Daniel Gautier; Ravit Helled; P. G. J. Irwin; A. D. Morse; N. Nettelmann; Bernard Marty; P. Rousselot; Olivia Venot; D. H. Atkinson; J. H. Waite; K. Reh; Amy A. Simon; Sushil K. Atreya; N. André; Michel Blanc; Ioannis A. Daglis; G. Fischer; W. D Geppertt; Tristan Guillot; Matthew Mckay Hedman; R. Hueso; E. Lellouch; Jonathan I. Lunine
Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases׳ abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn׳s atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn׳s bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn׳s upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn׳s bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn׳s stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn׳s stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.
The Astrophysical Journal | 2016
U. Mall; Kathrin Altwegg; H. Balsiger; Akiva Bar-Nun; Jean-Jacques Berthelier; André Bieler; P. Bochsler; Christelle Briois; Ursina Maria Calmonte; Michael R. Combi; B. Dabrowski; Johan De Keyser; Frederik Dhooghe; Björn Fiethe; Steven A. Fuselier; André Galli; P. Garnier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Margaux Hoang; Annette Jäckel; Ernest Kopp; A. Korth; Léna Le Roy; B. A. Magee; Bernard Marty; Olivier Mousis; H. Rème
Comets considered to be pristine objects contain key information about the early formation of the solar system. Their volatile components can provide clues about the origin and evolution of gases and ices in the comets. Measurements with ROSINA/RTOF at 67P/Churyumov-Gerasimenko have now allowed, for the first time, a direct in situ high-time resolution measurement of the most abundant cometary molecules originating directly from a comets nucleus over a long time-period, much longer than any previous measurements at a close distance to a comet between 3.1 and 2.3 au. We determine the local densities of H 2 O, CO 2 , and CO, and investigate their variabilities.
Planetary and Space Science | 2015
Harald Krüger; Thomas G. Stephan; C. Engrand; Christelle Briois; Sandra Siljeström; S. Merouane; Donia Baklouti; Henning Fischer; Nicolas Fray; Klaus Hornung; Harry J. Lehto; F.-R. Orthous-Daunay; Jouni Rynö; R. Schulz; Johan Silen; Laurent Thirkell; Mario Trieloff; Martin Hilchenbach
COSIMA (COmetary Secondary Ion Mass Analyser) is a time-of-flight secondary ion mass spectrometer (TOF-SIMS) on board the Rosetta space mission. COSIMA has been designed to measure the composition of cometary dust grains. It has a mass resolution m/{\Delta}m of 1400 at mass 100 u, thus enabling the discrimination of inorganic mass peaks from organic ones in the mass spectra. We have evaluated the identification capabilities of the reference model of COSIMA for inorganic compounds using a suite of terrestrial minerals that are relevant for cometary science. Ground calibration demonstrated that the performances of the flight model were similar to that of the reference model. The list of minerals used in this study was chosen based on the mineralogy of meteorites, interplanetary dust particles and Stardust samples. It contains anhydrous and hydrous ferromagnesian silicates, refractory silicates and oxides (present in meteoritic Ca-Al-rich inclusions), carbonates, and Fe-Ni sulfides. From the analyses of these minerals, we have calculated relative sensitivity factors for a suite of major and minor elements in order to provide a basis for element quantification for the possible identification of major mineral classes present in the cometary grains.