Christelle Machon
University of Lyon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christelle Machon.
PLOS ONE | 2015
Dany Graindorge; Sylvain Martineau; Christelle Machon; Philippe Arnoux; Jérôme Guitton; Stefania Francesconi; Céline Frochot; Evelyne Sage; Pierre-Marie Girard
UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.
PLOS Genetics | 2016
Therese Wilhelm; Sandrine Ragu; Indiana Magdalou; Christelle Machon; Elodie Dardillac; Hervé Técher; Jérôme Guitton; Michelle Debatisse; Bernard S. Lopez
Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation, and emphasize the importance of homologous recombination as a barrier against spontaneous genetic instability triggered by the endogenous oxidative/replication stress axis.
Biomedical Chromatography | 2014
Christelle Machon; Benjamin Le Calvé; Sylvie Coste; Mirella Riviere; Léa Payen; David Bernard; Jérôme Guitton
Lysyl oxidase enzymes are reported to be involved in patho-physiological process such as tumorigenesis. β-Aminopropionitrile (BAPN) is an irreversible inhibitor of lysyl oxidase activity, suggesting a potentially useful therapeutic of interest in oncology. This paper describes the first assay concerning the quantification of BAPN by mass spectrometry. A high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed for the quantification of BAPN in plasma and tumor of mice. This method combines dansyl chloride (Dns) derivatization and extraction using a solid-phase extraction Oasis Max column. Deuterated BAPN was used as internal standard (IS). Separation was achieved using an C₁₈ column HypersylGold, (ThermoElectron), 3.0 µm (100 × 2.1 mm i.d.). Gradient elution with water containing 0.1% acetic acid (A) and acetonitrile containing 0.1% acetic acid (B) was applied. Detection was performed with an electrospray ionization interface operating in negative ion mode. Selected reaction monitoring was used with ion transitions m/z 302 → 249 for BAPN-Dns and m/z 306 → 250 for the IS. The method was fully validated in plasma and was linear and sensitive in the range of 10-500 ng/mL. The lower limit of quantification in plasma was 2.5 ng/mL. This validated assay was successfully applied to a kinetic study of BAPN in mouse plasma and demonstrates that BAPN reaches the tumoral tissue.
Cancer Research | 2018
Nicolas Gourdin; Marion Bossennec; Céline Rodriguez; Selena Vigano; Christelle Machon; Camilla Jandus; David Bauché; Julien Faget; Isabelle Durand; Nicolas Chopin; Olivier Tredan; Julien C. Marie; Bertrand Dubois; Jérôme Guitton; Pedro Romero; Christophe Caux; Christine Menetrier-Caux
The production of CD73-derived adenosine (Ado) by Tregs has been proposed as a resistance mechanism to anti-PD-1 therapy in murine tumor models. We reported that human Tregs express the ectonucleotidase CD39, which generates AMP from ATP, but do not express the AMPase CD73. In contrast, CD73 defined a subset of effector CD4+ T cells (Teffs) enriched in polyfunctional Th1.17 cells characterized by expression of CXCR3, CCR6, and MDR1, and production of IL17A/IFNγ/IL22/GM-CSF. CD39+ Tregs selectively targeted CD73+ Teffs through cooperative degradation of ATP into Ado inhibiting and restricting the ability of CD73+ Teffs to secrete IL17A. CD73+ Teffs infiltrating breast and ovarian tumors were functionally blunted by Tregs expressing upregulated levels of CD39 and ATPase activity. Moreover, tumor-infiltrating CD73+ Teffs failed to express inhibitory immune checkpoints, suggesting that CD73 might be selected under pressure from immune checkpoint blockade therapy and thus may represent a nonredundant target for restoring antitumor immunity.Significance: Polyfunctional CD73+ T-cell effectors lacking other immune checkpoints are selectively targeted by CD39 overexpressing Tregs that dominate the breast tumor environment. Cancer Res; 78(13); 3604-18. ©2018 AACR.
Nature Communications | 2017
Elias Bou Samra; Géraldine Buhagiar-Labarchède; Christelle Machon; Jérôme Guitton; Rosine Onclercq-Delic; Michael R. Green; Olivier Alibert; Claude Gazin; Xavier Veaute; Mounira Amor-Guéret
Cells from Bloom’s syndrome patients display genome instability due to a defective BLM and the downregulation of cytidine deaminase. Here, we use a genome-wide RNAi-synthetic lethal screen and transcriptomic profiling to identify genes enabling BLM-deficient and/or cytidine deaminase-deficient cells to tolerate constitutive DNA damage and replication stress. We found a synthetic lethal interaction between cytidine deaminase and microtubule-associated protein Tau deficiencies. Tau is overexpressed in cytidine deaminase-deficient cells, and its depletion worsens genome instability, compromising cell survival. Tau is recruited, along with upstream-binding factor, to ribosomal DNA loci. Tau downregulation decreases upstream binding factor recruitment, ribosomal RNA synthesis, ribonucleotide levels, and affects ribosomal DNA stability, leading to the formation of a new subclass of human ribosomal ultrafine anaphase bridges. We describe here Tau functions in maintaining survival of cytidine deaminase-deficient cells, and ribosomal DNA transcription and stability. Moreover, our findings for cancer tissues presenting concomitant cytidine deaminase underexpression and Tau upregulation open up new possibilities for anti-cancer treatment.Cytidine deaminase (CDA) deficiency leads to genome instability. Here the authors find a synthetic lethal interaction between CDA and the microtubule-associated protein Tau deficiencies, and report that Tau depletion affects rRNA synthesis, ribonucleotide pool balance, and rDNA stability.
Nucleosides, Nucleotides & Nucleic Acids | 2016
Gabriel Bricard; Emeline Cros-Perrial; Christelle Machon; Charles Dumontet; Lars Petter Jordheim
ABSTRACT The 5′-nucleotidase cN-II has been shown to be associated with the sensitivity to nucleoside analogues, the survival of cytarabine treated leukemia patients and to cell proliferation. Due to the lack of relevant cell models for solid tumors, we developed four cell lines with low cN-II expression and characterized them concerning their in vitro sensitivity to cancer drugs and their intracellular nucleotide pools. All four cell models had an important decrease of cN-II expression but did not show modified sensitivity, cell proliferation or nucleotide pools. Our cell models will be important for the study of the role of cN-II in human cancer cells.
Journal of Chromatography A | 2015
Christelle Machon; Claire Bordes; Emeline Cros-Perrial; Yohann Clément; Lars Petter Jordheim; Pierre Lanteri; Jérôme Guitton
The present study is focused on the development of a pre-analytical strategy for the quantification of intracellular nucleotides from cultured cell lines. Different protocols, including cell recovery, nucleotide extraction and purification, were compared on a panel of nucleoside mono-, di- and triphosphates from four cell lines (adherent and suspension cells). The quantification of nucleotides was performed using a validated technique with on-line solid-phase extraction coupled with liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS). Designed experiments were implemented to investigate, in a rigorous and limited-testing experimental approach, the influence of several operating parameters. Results showed that the technique used to harvest adherent cells drastically affected the amounts of intracellular nucleotides. Scraping cells was deleterious because of a major leakage (more than 70%) of intracellular nucleotides during scraping. Moreover, some other tested conditions should be avoided, such as using pure methanol as extraction solvent (decrease over 50% of intracellular nucleotides extracted from NCI-H292 cells) or adding a purification step with chloroform. Designed experiments allowed identifying an interaction between the percentage of methanol and the presence of chloroform. The mixture methanol/water (70/30, v/v) was considered as the best compromise according to the nucleoside mono-, di-, or triphosphates and the four cell lines studied. This work highlights the importance of pre-analytical step combined with the cell lines studied associated to sensitive and validated assay for the quantification of nucleotides in biological matrices.
Toxicology in Vitro | 2018
Laetitia Guyot; Christelle Machon; Mylène Honorat; Brigitte Manship; Charlotte Bouard; Arnaud Vigneron; Alain Puisieux; Emilie Labarthe; Guy Jacob; Anne Dhenain; Jérôme Guitton; Léa Payen
Hydrazine-based liquid propellants are routinely used for space rocket propulsion, in particular monomethylhydrazine (MMH), although such compounds are highly hazardous. For several years, great efforts were devoted to developing a less hazardous molecule. To explore the toxicological effects of an alternative compound, namely (E)-1,1,4,4-tetramethyl-2-tetrazene (TMTZ), we exposed various cellular animal and human models to this compound and to the reference compound MMH. We observed no cytotoxic effects following exposure to TMTZ in animal, as well as human models. However, although the three animal models were unaffected by MMH, exposure of the human hepatic HepaRG cell model revealed that apoptotic cytotoxic effects were only detectable in proliferative human hepatic HepaRG cells and not in differentiated cells, although major biochemical modifications were uncovered in the latter. The present findings indicate that the metabolic mechanisms of MMH toxicity is close to those described for hydrazine with numerous biochemical alterations induced by mitochondrial disruption, production of radical species, and aminotransferase inhibition. The alternative TMTZ molecule had little impact on cellular viability and proliferation of rodent and human dermic and hepatic cell models. TMTZ did not produce any metabolomic effects and appears to be a promising putative industrial alternative to MMH.
Analytical and Bioanalytical Chemistry | 2014
Christelle Machon; Lars Petter Jordheim; Jean-Yves Puy; Isabelle Lefebvre; Charles Dumontet; Jérôme Guitton
Annales De Toxicologie Analytique | 2012
Christelle Machon; Gael Bourdin; Monique Manchon; Véronique Leray; Jérôme Guitton; Sabine Cohen