Christelle Mazuet
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christelle Mazuet.
Journal of Applied Microbiology | 2009
Patrick Fach; P. Micheau; Christelle Mazuet; S. Perelle; Michel R. Popoff
Aims: To develop real‐time PCR assays for tracking and tracing clostridia responsible for human botulism.
Toxins | 2017
Michael W. Peck; Theresa J. Smith; Fabrizio Anniballi; John W. Austin; Luca Bano; Marite Bradshaw; Paula Cuervo; Luisa W. Cheng; Yağmur Derman; Brigitte G. Dorner; Audrey Fisher; Karen K. Hill; Suzanne R. Kalb; Hannu Korkeala; Miia Lindström; Florigio Lista; Carolina Lúquez; Christelle Mazuet; Marco Pirazzini; Michel R. Popoff; Ornella Rossetto; Andreas Rummel; Dorothea Sesardic; Bal Ram Singh; Sandra C. Stringer
Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surrounding these neurotoxins. Worldwide, researchers are faced with the possibility that toxins having identical sequences may be given different designations or novel toxins having unique sequences may be given the same designations on publication. In order to minimize these problems, an ad hoc committee consisting of over 20 researchers in the field of botulinum neurotoxin research was convened to discuss the clarification of the issues involved in botulinum neurotoxin nomenclature. This publication presents a historical overview of the issues and provides guidelines for botulinum neurotoxin subtype nomenclature in the future.
Analytical Biochemistry | 2011
Géraldine Ferracci; Séverine Marconi; Christelle Mazuet; Emmanuel Jover; Marie-Pierre Blanchard; Michael Seagar; Michel Popoff; Christian Lévêque
Botulinum neurotoxins (BoNTs) are among the most toxic substances known. Surveillance and diagnostics require methods for rapid detection of BoNTs in complex media such as foodstuffs and human serum. We have developed in vitro assays to specifically detect the protease activity of botulinum neurotoxin B (BoNT/B) on a time scale of minutes. Cleavage of the BoNT/B substrate VAMP2, a membrane SNARE protein associated with synaptic vesicles, was monitored using real-time surface plasmon resonance to measure vesicle capture by specific antibodies coupled to microchips. The assay is functional in low-ionic-strength buffers and stable over a wide range of pH values (5.5-9.0). Endoproteolytic cleavage of VAMP2 was detected in 10 min with 2 pM native BoNT/B holotoxin. Contamination of liquid food products such as carrot juice, apple juice, and milk with low picomolar amounts of BoNT/B was revealed within 3h. BoNT/B activity was detected in sera from patients with type B botulism but not in healthy controls or patients with other neurological diseases. This robust, sensitive, and rapid protein chip assay is appropriate for monitoring BoNT/B in food products and diagnostic tests for type B botulism and could replace the current in vivo mouse bioassay.
Archives De Pediatrie | 2010
Lisa A. King; Michel-Robert Popoff; Christelle Mazuet; E Espié; V Vaillant; H de Valk
Infant botulism is caused by the ingestion of spores of Clostridium botulinum and affects newborns and infants under 12 months of age. Ingested spores multiply and produce botulinum toxin in the digestive tract, which then induces clinical symptoms. A single French case was described in the literature prior to 1991. We describe the cases of infant botulism identified in France between 1991 and 2009. All clinical suspicions of botulism must be declared in France. Biological confirmation of the disease is provided by the National reference laboratory for anaerobic bacteria and botulism at the Pasteur Institute. During this period, 7 cases of infant botulism were identified, 1 per year from 2004 to 2008 and 2 in 2009. The median age of affected infants was 119 days and all were female. All infants presented with constipation and oculomotor symptoms. All were hospitalized and required mechanical ventilation. The infants recovered from their botulism. The diagnosis of infant botulism was biologically confirmed for all patients. One 4-month-old infant was treated with a single dose of the human-derived botulism antitoxin specific for infant botulism types A and B (BabyBIG®). The infants all had different feeding habits ranging from exclusive breast feeding to a mix of formula feeding and solid food consumption. The consumption of honey, the only documented risk food for this disease, was reported for 3 of the infants. The honey had been placed on the pacifier of 2 infants and directly in the mouth of the 3rd by the mother. Infant botulism, a form of botulism that was previously rarely recognized in France, has been reported more frequently during the last 6 years. This disease remains rare but nonetheless severe. In light of recent epidemiological data, efforts to raise awareness among parents of infants and health professionals on the danger of infant botulism and particularly, its association with honey consumption seems necessary.
PLOS ONE | 2012
Chloé Connan; Holger Brüggemann; Christelle Mazuet; Stéphanie Raffestin; Nadège Cayet; Michel R. Popoff
Clostridium botulinum synthesizes a potent neurotoxin (BoNT) which associates with non-toxic proteins (ANTPs) to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs) and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes) have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs.
Journal of Clinical Microbiology | 2015
Christelle Mazuet; Jean Sautereau; Christine Legeay; Christiane Bouchier; Philippe Bouvet; Michel R. Popoff
ABSTRACT An outbreak of human botulism was due to consumption of ham containing botulinum neurotoxins B and E. A Clostridium botulinum type E strain isolated from ham was assigned to a new subtype (E12) based on bont/E gene sequencing and belongs to a new multilocus sequence subtype, as analyzed by whole-genome sequencing.
mAbs | 2015
Christine Rasetti-Escargueil; Arnaud Avril; Siham Chahboun; Rob Tierney; Nicola Bak; Sebastian Miethe; Christelle Mazuet; Michel R. Popoff; Philippe Thullier; Michael Hust; Thibaut Pelat; Dorothea Sesardic
Botulinum neurotoxins (BoNTs) are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agents by the Centers for Disease Control and Prevention. To date, 7 subtypes of BoNT/B were identified showing that subtypes B1 (16 strains) and B2 (32 strains) constitute the vast majority of BoNT/B strains. Neutralizing antibodies are required for the development of anti-botulism drugs to deal with the potential risk. In this study, macaques (Macaca fascicularis) were immunized with recombinant light chain (LC) or heavy chain (HC) of BoNT/B2, followed by the construction of 2 hyper-immune phage display libraries. The best single-chain variable fragments (scFvs) isolated from each library were selected according to their affinities and cross reactivity with BoNT/B1 toxin subtype. These scFvs against LC and HC were further analyzed by assessing the inhibition of in vitro endopeptidase activity of BoNT/B1 and B2 and neutralization of BoNT/B1 and B2 toxin-induced paralysis in the mouse ex vivo phrenic nerve assay. The antibodies B2–7 (against HC) and BLC3 (against LC) were produced as scFv-Fc, and, when tested individually, neutralized BoNT/B1 and BoNT/B2 in a mouse ex vivo phrenic nerve assay. Whereas only scFv-Fc BLC3 alone protected mice against BoNT/B2-induced paralysis in vivo, when B2–7 and BLC3 were combined they exhibited potent synergistic protection. The present study provided an opportunity to assess the extent of antibody-mediated neutralization of BoNT/B1 and BoNT/B2 subtypes in ex vivo and in vitro assays, and to confirm the benefit of the synergistic effect of antibodies targeting the 2 distinct functional domains of the toxin in vivo. Notably, the framework regions of the most promising antibodies (B2–7 and BLC3) are close to the human germline sequences, which suggest that they may be well tolerated in potential clinical development.
PLOS ONE | 2013
Jessica Vanhomwegen; Nicolas Berthet; Christelle Mazuet; Ghislaine Guigon; Tatiana Vallaeys; Philippe Dubois; Giulia C. Kennedy; Stewart T. Cole; Valérie Caro; Jean-Claude Manuguerra; Michel-Robert Popoff
Background Clostridium botulinum and related clostridia express extremely potent toxins known as botulinum neurotoxins (BoNTs) that cause severe, potentially lethal intoxications in humans. These BoNT-producing bacteria are categorized in seven major toxinotypes (A through G) and several subtypes. The high diversity in nucleotide sequence and genetic organization of the gene cluster encoding the BoNT components poses a great challenge for the screening and characterization of BoNT-producing strains. Methodology/Principal Findings In the present study, we designed and evaluated the performances of a resequencing microarray (RMA), the PathogenId v2.0, combined with an automated data approach for the simultaneous detection and characterization of BoNT-producing clostridia. The unique design of the PathogenID v2.0 array allows the simultaneous detection and characterization of 48 sequences targeting the BoNT gene cluster components. This approach allowed successful identification and typing of representative strains of the different toxinotypes and subtypes, as well as the neurotoxin-producing C. botulinum strain in a naturally contaminated food sample. Moreover, the method allowed fine characterization of the different neurotoxin gene cluster components of all studied strains, including genomic regions exhibiting up to 24.65% divergence with the sequences tiled on the arrays. Conclusions/Significance The severity of the disease demands rapid and accurate means for performing risk assessments of BoNT-producing clostridia and for tracing potentials sources of contamination in outbreak situations. The RMA approach constitutes an essential higher echelon component in a diagnostics and surveillance pipeline. In addition, it is an important asset to characterise potential outbreak related strains, but also environment isolates, in order to obtain a better picture of the molecular epidemiology of BoNT-producing clostridia.
PLOS ONE | 2015
Sebastian Miethe; Christine Rasetti-Escargueil; Arnaud Avril; Yvonne Liu; Siham Chahboun; Hannu Korkeala; Christelle Mazuet; Michel-Robert Popoff; Thibaut Pelat; Philippe Thullier; Dorothea Sesardic; Michael Hust
Background Botulinum neurotoxins (BoNTs) are considered to be the most toxic substances known on earth and are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food-poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agent by the Centers of Disease Control and Prevention (CDC) and are listed among the six agents with the highest risk to be used as bioweapons. Neutralizing antibodies are required for the development of effective anti-botulism therapies to deal with the potential risk of exposure. Results In this study, a macaque (Macaca fascicularis) was immunized with recombinant light chain of BoNT/E3 and an immune phage display library was constructed. After a multi-step panning, several antibody fragments (scFv, single chain fragment variable) with nanomolar affinities were isolated, that inhibited the endopeptidase activity of pure BoNT/E3 in vitro by targeting its light chain. Furthermore, three scFv were confirmed to neutralize BoNT/E3 induced paralysis in an ex vivo mouse phrenic nerve-hemidiaphragm assay. The most effective neutralization (20LD50/mL, BoNT/E3) was observed with scFv ELC18, with a minimum neutralizing concentration at 0.3 nM. Furthermore, ELC18 was highly effective in vivo when administered as an scFv-Fc construct. Complete protection of 1LD50 BoNT/E3 was observed with 1.6 ng/dose in the mouse flaccid paralysis assay. Conclusion These scFv-Fcs antibodies are the first recombinant antibodies neutralizing BoNT/E by targeting its light chain. The human-like nature of the isolated antibodies is predicting a good tolerance for further clinical development.
Vaccine | 2009
Christina Stahl; Lucia Unger; Christelle Mazuet; Michel Popoff; Reto Straub; Joachim Frey
Botulinum neurotoxins, predominantly serotypes C and D, cause equine botulism through forage poisoning. The C-terminal part of the heavy chain of botulinum neurotoxin types C and D (HcBoNT/C and D) was expressed in Escherichia coli and evaluated as a recombinant mono- and bivalent vaccine in twelve horses in comparison to a commercially available toxoid vaccine. A three-dose subcutaneous immunization of adult horses elicited robust serum antibody response in an ELISA using the immunogen as a capture antigen. Immune sera showed dose-dependent high potency in neutralizing specifically the active BoNT/C and D in the mouse protection assay. The aluminium hydroxide based mono- and bivalent recombinant HcBoNT/C and D vaccines were characterized by good compatibility and the ability to elicit protective antibody titers similar or superior to the commercially available toxoid vaccine.