Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christelle Robinet is active.

Publication


Featured researches published by Christelle Robinet.


Ecological Applications | 2005

EXPANSION OF GEOGRAPHIC RANGE IN THE PINE PROCESSIONARY MOTH CAUSED BY INCREASED WINTER TEMPERATURES

Andrea Battisti; Michael Stastny; Sigrid Netherer; Christelle Robinet; Axel Schopf; Alain Roques; Stig Larsson

Global warming is predicted to cause distributional changes in organisms whose geographic ranges are controlled by temperature. We report a recent latitudinal and altitudinal expansion of the pine processionary moth, Thaumetopoea pityocampa, whose larvae build silk nests and feed on pine foliage in the winter. In north-central France (Paris Basin), its range boundary has shifted by 87 km northwards between 1972 and 2004; in northern Italy (Alps), an altitudinal shift of 110–230 m upwards occurred between 1975 and 2004. By experimentally linking winter temperature, feeding activity, and survival of T. pityocampa larvae, we attribute the expansions to increased winter survival due to a warming trend over the past three decades. In the laboratory we determined the minimum nest and night air temperatures required for larval feeding and developed a mechanistic model based on these temperature thresholds. We tested the model in a translocation experiment that employed natural temperature gradients as spatial an...


Population Ecology | 2009

The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions

Patrick C. Tobin; Christelle Robinet; Derek M. Johnson; Stefanie Whitmire; Ottar N. Bjørnstad; Andrew M. Liebhold

Allee effects have been applied historically in efforts to understand the low-density population dynamics of rare and endangered species. Many biological invasions likewise experience the phenomenon of decreasing population growth rates at low population densities because most founding populations of introduced nonnative species occur at low densities. In range expansion of established species, the initial colonizers of habitat beyond the organism’s current range are usually at low density, and thus could be subject to Allee dynamics. There has been consistent empirical and theoretical evidence demonstrating, and in some cases quantifying, the role of Allee dynamics in the gypsy moth, Lymantria dispar (L.), invasion of North America. In this review, we examine the potential causes of the Allee effect in the gypsy moth and highlight the importance of mate-finding failure as a primary mechanism behind an Allee effect, while the degree to which generalist predators induce an Allee effect remains unclear. We then explore the role of Allee effects in the establishment and spread dynamics of the gypsy moth system, which conceptually could serve as a model system for understanding how Allee effects manifest themselves in the dynamics of biological invasions.


PLOS ONE | 2009

Role of human-mediated dispersal in the spread of the pinewood nematode in China.

Christelle Robinet; Alain Roques; Hongyang Pan; Guofei Fang; Jian-Ren Ye; Yanzhuo Zhang; Jianghua Sun

Background Intensification of world trade is responsible for an increase in the number of alien species introductions. Human-mediated dispersal promotes not only introductions but also expansion of the species distribution via long-distance dispersal. Thus, understanding the role of anthropogenic pathways in the spread of invading species has become one of the most important challenges nowadays. Methodology/Principal Findings We analysed the invasion pattern of the pinewood nematode in China based on invasion data from 1982 to 2005 and monitoring data on 7 locations over 15 years. Short distance spread mediated by long-horned beetles was estimated at 7.5 km per year. Infested sites located further away represented more than 90% of observations and the mean long distance spread was estimated at 111–339 km. Railways, river ports, and lakes had significant effects on the spread pattern. Human population density levels explained 87% of the variation in the invasion probability (P<0.05). Since 2001, the number of new records of the nematode was multiplied by a factor of 5 and the spread distance by a factor of 2. We combined a diffusion model to describe the short distance spread with a stochastic, individual based model to describe the long distance jumps. This combined model generated an error of only 13% when used to predict the presence of the nematode. Under two climate scenarios (stable climate or moderate warming), projections of the invasion probability suggest that this pest could expand its distribution 40–55% by 2025. Conclusions/Significance This study provides evidence that human-induced dispersal plays a fundamental role in the spread of the pinewood nematode, and appropriate control measures should be taken to stop or slow its expansion. This model can be applied to Europe, where the nematode had been introduced later, and is currently expanding its distribution. Similar models could also be derived for other species that could be accidentally transported by humans.


PLOS ONE | 2012

Framework for Modelling Economic Impacts of Invasive Species, Applied to Pine Wood Nematode in Europe

Tarek Soliman; M.C.M. Mourits; Wopke van der Werf; Geerten M. Hengeveld; Christelle Robinet; Alfons Oude Lansink

Background Economic impact assessment of invasive species requires integration of information on pest entry, establishment and spread, valuation of assets at risk and market consequences at large spatial scales. Here we develop such a framework and demonstrate its application to the pinewood nematode, Bursaphelenchus xylophilus, which threatens the European forestry industry. The effect of spatial resolution on the assessment result is analysed. Methodology/Principal Findings Direct economic impacts resulting from wood loss are computed using partial budgeting at regional scale, while impacts on social welfare are computed by a partial equilibrium analysis of the round wood market at EU scale. Substantial impacts in terms of infested stock are expected in Portugal, Spain, Southern France, and North West Italy but not elsewhere in EU in the near future. The cumulative value of lost forestry stock over a period of 22 years (2008–2030), assuming no regulatory control measures, is estimated at €22 billion. The greatest yearly loss of stock is expected to occur in the period 2014–2019, with a peak of three billion euros in 2016, but stabilizing afterwards at 300–800 million euros/year. The reduction in social welfare follows the loss of stock with considerable delay because the yearly harvest from the forest is only 1.8%. The reduction in social welfare for the downstream round wood market is estimated at €218 million in 2030, whereby consumers incur a welfare loss of €357 million, while producers experience a €139 million increase, due to higher wood prices. The societal impact is expected to extend to well beyond the time horizon of the analysis, and long after the invasion has stopped. Conclusions/Significance Pinewood nematode has large economic consequences for the conifer forestry industry in the EU. A change in spatial resolution affected the calculated directed losses by 24%, but did not critically affect conclusions.


PLOS ONE | 2012

A Suite of Models to Support the Quantitative Assessment of Spread in Pest Risk Analysis

Christelle Robinet; H. Kehlenbeck; Darren J. Kriticos; R. Baker; Andrea Battisti; S. Brunel; M. Dupin; Dominic Eyre; Massimo Faccoli; Zhenya Ilieva; Marc Kenis; Jon D. Knight; P. Reynaud; Annie Yart; Wopke van der Werf

Pest Risk Analyses (PRAs) are conducted worldwide to decide whether and how exotic plant pests should be regulated to prevent invasion. There is an increasing demand for science-based risk mapping in PRA. Spread plays a key role in determining the potential distribution of pests, but there is no suitable spread modelling tool available for pest risk analysts. Existing models are species specific, biologically and technically complex, and data hungry. Here we present a set of four simple and generic spread models that can be parameterised with limited data. Simulations with these models generate maps of the potential expansion of an invasive species at continental scale. The models have one to three biological parameters. They differ in whether they treat spatial processes implicitly or explicitly, and in whether they consider pest density or pest presence/absence only. The four models represent four complementary perspectives on the process of invasion and, because they have different initial conditions, they can be considered as alternative scenarios. All models take into account habitat distribution and climate. We present an application of each of the four models to the western corn rootworm, Diabrotica virgifera virgifera, using historic data on its spread in Europe. Further tests as proof of concept were conducted with a broad range of taxa (insects, nematodes, plants, and plant pathogens). Pest risk analysts, the intended model users, found the model outputs to be generally credible and useful. The estimation of parameters from data requires insights into population dynamics theory, and this requires guidance. If used appropriately, these generic spread models provide a transparent and objective tool for evaluating the potential spread of pests in PRAs. Further work is needed to validate models, build familiarity in the user community and create a database of species parameters to help realize their potential in PRA practice.


Biological Invasions | 2012

Human-mediated long-distance jumps of the pine processionary moth in Europe

Christelle Robinet; Charles-Edouard Imbert; Jérôme Rousselet; Daniel Sauvard; Jacques Garcia; Francis Goussard; Alain Roques

Although climate change is currently affecting the distribution of many species, insects are particularly impacted because of their high sensitivity to temperature. The pine processionary moth, Thaumetopoea pityocampa, is a forest insect extending its distribution in response to climate warming. Some pioneer colonies were recently detected far beyond the main range, near Paris and in eastern France. This study tracked the origin and pathways of these pioneer colonies through a combined use of genetic markers, measurement of female flight capabilities, and comparative analyses of the natural enemy complexes. This study also aimed to determine the establishment capability beyond the main range, considering the survival rate during two recent cold periods. The larval survival rate was higher in pioneer colonies (which behave like urban heat islands) than in main range. The flight capacity of females would not have allowed them to come from the main range or the nearest established colonies, and molecular tools further showed that individuals from at least three pioneer colonies were not assigned or similar to individuals at the edge of the main range. Egg parasitoids were absent while pupal parasitoids were present in the pioneer colonies suggesting an introduction at the pupal stage. These approaches provided strong evidence that this species has been accidentally moved near Paris and to eastern France, supporting the hypothesis of human-mediated transportation over natural dispersal. This type of dispersal was unexpected because of risks from urticating hairs and the easy detection of the species.


PLOS ONE | 2013

Assessing Species Distribution Using Google Street View: A Pilot Study with the Pine Processionary Moth

Jérôme Rousselet; Charles-Edouard Imbert; Anissa Dekri; Jacques Garcia; Francis Goussard; Bruno Vincent; Olivier Denux; Christelle Robinet; Franck Dorkeld; Alain Roques; Jean-Pierre Rossi

Mapping species spatial distribution using spatial inference and prediction requires a lot of data. Occurrence data are generally not easily available from the literature and are very time-consuming to collect in the field. For that reason, we designed a survey to explore to which extent large-scale databases such as Google maps and Google street view could be used to derive valid occurrence data. We worked with the Pine Processionary Moth (PPM) Thaumetopoea pityocampa because the larvae of that moth build silk nests that are easily visible. The presence of the species at one location can therefore be inferred from visual records derived from the panoramic views available from Google street view. We designed a standardized procedure allowing evaluating the presence of the PPM on a sampling grid covering the landscape under study. The outputs were compared to field data. We investigated two landscapes using grids of different extent and mesh size. Data derived from Google street view were highly similar to field data in the large-scale analysis based on a square grid with a mesh of 16 km (96% of matching records). Using a 2 km mesh size led to a strong divergence between field and Google-derived data (46% of matching records). We conclude that Google database might provide useful occurrence data for mapping the distribution of species which presence can be visually evaluated such as the PPM. However, the accuracy of the output strongly depends on the spatial scales considered and on the sampling grid used. Other factors such as the coverage of Google street view network with regards to sampling grid size and the spatial distribution of host trees with regards to road network may also be determinant.


Annals of Forest Science | 2014

Potential spread of the pine processionary moth in France: preliminary results from a simulation model and future challenges

Christelle Robinet; Jérôme Rousselet; Alain Roques

ContextSome forest insect pests are currently extending their range as a consequence of climate warming. However, in most cases, the evidence is mainly based on correlations and the underlying mechanism is not clearly known.AimsOne of the most severe pests of pine forests in Europe, the pine processionary moth, Thaumetopoea pityocampa, is currently expanding its distribution as a result of climate warming and does not occupy entirely its potential habitat. A model describing its spread was developed to simulate its potential range in France under various climate change scenarios.MethodsThe spread model was divided into several sub-models to describe the growth, survival and dispersal of the species. The model was validated on the observed change of species distribution, its sensitivity was tested, and spread scenarios were simulated for the future.ResultsThe model shows that climate warming initiated the species range expansion in France since the early 1990s. The spread is now limited by dispersal capability, but human-mediated dispersal could accelerate the range expansion.ConclusionSpecies range expansion is an indicator of climate change. However, time lags can appear due to limited dispersal capabilities, and human-mediated dispersal could create satellite colonies and artificially accelerate the spread.


Ecology and Evolution | 2013

Are heat waves susceptible to mitigate the expansion of a species progressing with global warming

Christelle Robinet; Jérôme Rousselet; Patrick Pineau; Florie Miard; Alain Roques

A number of organisms, especially insects, are extending their range in response of the increasing trend of warmer temperatures. However, the effects of more frequent climatic anomalies on these species are not clearly known. The pine processionary moth, Thaumetopoea pityocampa, is a forest pest that is currently extending its geographical distribution in Europe in response to climate warming. However, its population density largely decreased in its northern expansion range (near Paris, France) the year following the 2003 heat wave. In this study, we tested whether the 2003 heat wave could have killed a large part of egg masses. First, the local heat wave intensity was determined. Then, an outdoor experiment was conducted to measure the deviation between the temperatures recorded by weather stations and those observed within sun-exposed egg masses. A second experiment was conducted under laboratory conditions to simulate heat wave conditions (with night/day temperatures of 20/32°C and 20/40°C compared to the control treatment 13/20°C) and measure the potential effects of this heat wave on egg masses. No effects were noticed on egg development. Then, larvae hatched from these egg masses were reared under mild conditions until the third instar and no delayed effects on the development of larvae were found. Instead of eggs, the 2003 heat wave had probably affected directly or indirectly the young larvae that were already hatched when it occurred. Our results suggest that the effects of extreme climatic anomalies occurring over narrow time windows are difficult to determine because they strongly depend on the life stage of the species exposed to these anomalies. However, these effects could potentially reduce or enhance the average warming effects. As extreme weather conditions are predicted to become more frequent in the future, it is necessary to disentangle the effects of the warming trend from the effects of climatic anomalies when predicting the response of a species to climate change.


Archive | 2015

Climate Warming and Past and Present Distribution of the Processionary Moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa

Alain Roques; Jérôme Rousselet; Mustafa Avcı; Dimitrios N. Avtzis; Andrea Cristina Basso; Andrea Battisti; Mohamed Lahbib Ben Jamaa; Atia Bensidi; Laura Berardi; Wahiba Berretima; Manuela Branco; Gahdab Chakali; Ejup Çota; Mirza Dautbašić; Horst Delb; Moulay Ahmed El Alaoui El Fels; Saïd El Mercht; Mhamed El Mokhefi; Beat Forster; Jacques Garcia; Georgi Georgiev; Milka Glavendekić; Francis Goussard; Paula Halbig; Lars Henke; Rodolfo Hernańdez; José A. Hódar; Kahraman İpekdal; Maja Jurc; Dietrich Klimetzek

Pine processionary moth, Thaumetopea pityocampa, is a model insect indicator of global warming, the northwards and upwards range expansion of this Mediterranean species being directly associated with the recent warming up. The knowledge about the drivers of moth expansion is synthesized. A first standardized mapping of the northern expansion edge, from Western Europe to Turkey, is presented, then detailed for 20 countries of Europe, Asia Minor and North Africa, including future trends. Additional data about the responses of the other Thaumetopoea species are given. Finally, the chapter points out the importance of the man-mediated introductions in the expansion process.

Collaboration


Dive into the Christelle Robinet's collaboration.

Top Co-Authors

Avatar

Alain Roques

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Rousselet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Baker

Food and Environment Research Agency

View shared research outputs
Top Co-Authors

Avatar

Francis Goussard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jacques Garcia

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

W. van der Werf

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Darren J. Kriticos

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Christelle Suppo

François Rabelais University

View shared research outputs
Researchain Logo
Decentralizing Knowledge