Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christer Grönlund is active.

Publication


Featured researches published by Christer Grönlund.


Journal of Electromyography and Kinesiology | 2009

Motor unit synchronization during fatigue: Described with a novel sEMG method based on large motor unit samples

Andreas Holtermann; Christer Grönlund; J.S. Karlsson; Karin Roeleveld

The amount of documented increase in motor unit (MU) synchronization with fatigue and its possible relation with force tremor varies largely, possibly due to inhomogeneous muscle activation and methodological discrepancies and limitations. The aim of this study was to apply a novel surface electromyographical (EMG) descriptor for MU synchronization based on large MU populations to examine changes in MU synchronization with fatigue at different sites of a muscle and its relation to tremor. Twenty-four subjects performed an isometric elbow flexion at 25% of maximal voluntary contraction until exhaustion. Monopolar EMG signals were recorded using a grid of 130 electrodes above the biceps brachii. Changes in MU synchronization were estimated based on the sub-band skewness of EMG signals and tremor by the coefficient of variation in force. The synchronization descriptor was dependent on recording site and increased with fatigue together with tremor. There was a general association between these two parameters, but not between their fluctuations. These results are in agreement with other surface EMG studies and indicate that the novel descriptor can be used to attain information of synchronization between large MU populations during fatigue that cannot be retrieved with intra-muscular EMG.


BMC Musculoskeletal Disorders | 2010

Altered neuromuscular control mechanisms of the trapezius muscle in fibromyalgia.

Björn Gerdle; Christer Grönlund; Stefan Karlsson; Andreas Holtermann; Karin Roeleveld

Backgroundfibromyalgia is a relatively common condition with widespread pain and pressure allodynia, but unknown aetiology. For decades, the association between motor control strategies and chronic pain has been a topic for debate. One long held functional neuromuscular control mechanism is differential activation between regions within a single muscle. The aim of this study was to investigate differences in neuromuscular control, i.e. differential activation, between myalgic trapezius in fibromyalgia patients and healthy controls.Methods27 fibromyalgia patients and 30 healthy controls performed 3 minutes bilateral shoulder elevations with different loads (0-4 Kg) with a high-density surface electromyographical (EMG) grid placed above the upper trapezius. Differential activation was quantified by the power spectral median frequency of the difference in EMG amplitude between the cranial and caudal parts of the upper trapezius. The average duration of the differential activation was described by the inverse of the median frequency of the differential activations.Resultsthe median frequency of the differential activations was significantly lower, and the average duration of the differential activations significantly longer in fibromyalgia compared with controls at the two lowest load levels (0-1 Kg) (p < 0.04), but not at the two highest load levels (2 and 4 Kg).Conclusionthese findings illustrate a different neuromuscular control between fibromyalgia patients and healthy controls during a low load functional task, either sustaining or resulting from the chronic painful condition. The findings may have clinical relevance for rehabilitation strategies for fibromyalgia.


Philosophical Transactions of the Royal Society A | 2009

Signal processing of the surface electromyogram to gain insight into neuromuscular physiology

J. Stefan Karlsson; Karin Roeleveld; Christer Grönlund; Andreas Holtermann; Nils Östlund

A surface electromyogram (sEMG) contains information about physiological and morphological characteristics of the active muscle and its neural strategies. Because the electrodes are situated on the skin above the muscle, the sEMG is an easily obtainable source of information. However, different combinations of physiological and morphological characteristics can lead to similar sEMG signals and sEMG recordings contain noise and other artefacts. Therefore, many sEMG signal processing methods have been developed and applied to allow insight into neuromuscular physiology. This paper gives an overview of important advances in the development and applications of sEMG signal processing methods, including spectral estimation, higher order statistics and spatio-temporal processing. These methods provide information about muscle activation dynamics and muscle fatigue, as well as characteristics and control of single motor units (conduction velocity, firing rate, amplitude distribution and synchronization).


Acta Physiologica | 2008

Differential activation of regions within the biceps brachii muscle during fatigue

Andreas Holtermann; Christer Grönlund; J.S. Karlsson; Karin Roeleveld

Aim:  To examine the occurrence of repeated differential activation between the heads of the biceps brachii muscle and its relation to fatigue prevention during a submaximal contraction.


Medical & Biological Engineering & Computing | 2005

Simultaneous estimation of muscle fibre conduction velocity and muscle fibre orientation using 2D multichannel surface electromyogram.

Christer Grönlund; Nils Östlund; Karin Roeleveld; J.S. Karlsson

The paper presents a new approach for simultaneous estimation of muscle fibre conduction velocity (MFCV) and muscle fibre orientation (MFO) for motor units (MUs) in two-dimensional (2D) multichannel surface electromyography recordings. This is an important tool for detecting changes and abnormalities in muscle function and structure. In addition, simultaneous estimation of MFO and MFCV avoids the necessity of manual electrode alignment. The proposed method detected propagating MU action potentials (MUAPs) in a running time window as moving components in amplitude maps. Thereafter, estimations were obtained by fitting a three-dimensional function to these maps. The performance was evaluated using synthetic MU signals at 10 dB SNR and authentic biceps brachii measurements. Results demonstrated MFCV and MFO estimates with standard deviations of less than 0.05 m s−1 and 1° for simulated signals, and less than 0.2 m s−1 and 4° for experimental data. However, standard deviations as low as 0.12 m s−1 and 1.6° from real signals were demonstrated. It was concluded that the method performs as well as, or better than, linear array multichannel methods when individual propagating MUAPs can be identified, even if electrodes are not aligned with fibre direction.


European Journal of Echocardiography | 2013

Pulmonary artery acceleration time in identifying pulmonary hypertension patients with raised pulmonary vascular resistance.

Erik Tossavainen; Stefan Söderberg; Christer Grönlund; Manuel Gonzalez; Michael Y. Henein; Per Lindqvist

BACKGROUND In patients with pulmonary hypertension (PH), ascertaining raised vascular resistance as a cause is a clinical objective, for which various Doppler-based measurements have been proposed, but with modest accuracy. We hypothesize that pulmonary acceleration time (PAcT) and the ratio of PAcT/peak pulmonary artery systolic pressure (PASP) reflect better the extent of the vascular resistance, compared with other available methods, and can differentiate accurately between pre- and post-capillary PH. METHODS AND RESULTS We investigated 56 patients (mean age 61 ± 13 years, 23 males) in a simultaneous echocardiography and right heart catheterization (RHC) study. Based on the RHC, pulmonary vascular resistance (PVR), and pulmonary capillary wedge pressure (PCWP), patients were divided into four groups: Group 1 = normal PVR [<3 WU (Wood units)] and PCWP (<12 mmHg), Group 2 = raised PVR but normal PCWP, Group 3 = raised PVR and PCWP; and Group 4 = normal PVR but raised PCWP. We used spectral Doppler to measure PAcT (corrected for heart rate) and to estimate PASP (peak tricuspid regurgitation pressure drop + estimated right atrial pressure of 7 mmHg). We also tested other available methods for assessing PVR. There were small age differences between patient groups but no age difference between Groups 2 and 4. PAcT and PAcT/PASP were both significantly (P = 0.008) reduced in Groups 2 and 3 compared with Groups 1 and 4. PAcT ≤90 had an 84% sensitivity and an 85% specificity in identifying patients with PVR ≥3 WU with a positive and a negative predictive value of 88% and 81%, respectively. The non-linear relationship between PVR and PAcT gave a quadratic r = 0.61, P < 0.001. ROC curve analysis showed PAcT having the best accuracy (83%) in detecting a PVR ≥3 WU. CONCLUSION PAcT <90 ms can serve as a strong non-invasive predictor of PVR >3 WU, which could differentiate patients with pre- and post-capillary PH.


Medical & Biological Engineering & Computing | 2005

On-line signal quality estimation of multichannel surface electromyograms.

Christer Grönlund; Karin Roeleveld; Andreas Holtermann; J.S. Karlsson

When multichannel surface-electromyography (MCSEMG) systems are used, there is a risk of recording low-quality signals. Such signals can be confusing for analysis and interpretation and can be caused by power-line interference, motion artifacts or poor electrode-skin contact. Usually, the electrode-skin impedance is measured to estimate the quality of the contact between the electrodes and the skin. However, this is not always practical, and the contact can change over short time-scales. A fast method is described to estimate the quality of individual signals of monopolar MCSEMG recordings based on volume conduction of myo-electric signals. The characteristics of the signals were described using two descriptor variables. Outliers (extreme data points) were detected in the two-dimensional distributions of the descriptor variables using a non-parametric technique, and the quality of the signals was estimated by their outlier probabilities. The methods performance was evaluated using 1 s long signals visually classified as very poor (G1), poor (G2) or good quality (G3). Recordings from different subjects, contraction levels and muscles were used. An optimum threshold at 0.05 outlier probability was proposed and resulted in classification accuracies of 100% and >70% for G1 and G2 signals, respectively, whereas <5% of the G3 signals were classified as poor. In conclusion, the proposed method estimated MCSEMG signal quality with high accuracy, compared with visual assessment, and is suitable for on-line implementation. The method could be applied to other multichannel sensor systems, with an arbitrary number of descriptor variables, when their distributions can be assumed to lie within a certain range.


Aviation, Space, and Environmental Medicine | 2008

Hand cold recovery responses before and after 15 months of military training in a cold climate

Helge Brändström; Helena Grip; Per Hallberg; Christer Grönlund; Karl-Axel Ängquist; Gordon G. Giesbrecht

INTRODUCTION The ability of fingers to rapidly rewarm following cold exposure is a possible indicator of cold injury protection. We categorized the post-cooling hand-rewarming responses of men before and after participation in 15 mo of military training in a cold environment in northern Sweden to determine: 1) if the initial rewarming category was related to the occurrence of local cold injury during training; and 2) if cold training affected subsequent hand-rewarming responses. METHODS Immersion of the dominant hand in 10 degrees C water for 10 min was performed pre-training on 77 men. Of those, 45 were available for successful post-training retests. Infrared thermography monitored the dorsal hand during 30 min of recovery. Rewarming was categorized as normal, moderate, or slow based on mean fingertip temperature at the end of 30 min of recovery (TFinger,30) and the percentage of time that fingertips were vasodilated (%VD). RESULTS Cold injury occurrence during training was disproportionately higher in the slow rewarmers (four of the five injuries). Post-training, baseline fingertip temperatures and cold recovery variables increased significantly in moderate and slow rewarmers: TFinger30 increased from 21.9 +/- 4 to 30.4 +/- 6 degrees C (Moderate), and from 17.4 +/- 0 to 22.3 +/- 7 degrees C (Slow); %VD increased from 27.5 +/- 16 to 65.9 +/- 34% (Moderate), and from 0.7 +/- 2 to 31.7 +/- 44% (Slow). CONCLUSIONS Results of the cold recovery test were related to the occurrence of local cold injury during long-term cold-weather training. Cold training itself improved baseline and cold recovery in moderate and slow rewarmers.


Journal of Electromyography and Kinesiology | 2010

Duration of differential activations is functionally related to fatigue prevention during low-level contractions

Andreas Holtermann; Christer Grönlund; J. Ingebrigtsen; J.S. Karlsson; Karin Roeleveld

The aim of this study was to investigate the importance of duration of differential activations between the heads of the biceps brachii on local fatigue during prolonged low-level contractions. Fifteen subjects carried out isometric elbow flexion at 5% of maximal voluntary contraction (MVC) for 30 min. MVCs were performed before and at the end of the prolonged contraction. Surface electromyographic (EMG) signals were recorded from both heads of the biceps brachii. Differential activation was analysed based on the difference in EMG amplitude (activation) between electrodes situated at the two heads. Differential activations were quantified by the power spectral median frequency of the difference in activation between the heads throughout the contraction. The inverse of the median frequency was used to describe the average duration of the differential activations. The relation between average duration of the differential activations and the fatigue-induced reduction in maximal force was explored by linear regression analysis. The main finding was that the average duration of differential activation was positively associated to relative maximal force at the end of the 30 min contraction (R(2)=0.5, P<0.01). The findings of this study highlight the importance of duration of differential activations for local fatigue, and support the hypothesis that long term differential activations prevent fatigue during prolonged low-level contractions.


Journal of Electromyography and Kinesiology | 2011

The relation between neuromuscular control and pain intensity in fibromyalgia.

Andreas Holtermann; Christer Grönlund; Karin Roeleveld; Björn Gerdle

Fibromyalgia patients are shown to have a different neuromuscular control (differential activation) than healthy persons. Before clinical trials can be initiated, the relation between differential activations and pain intensity among fibromyalgia patients needs to be investigated. Twenty-seven fibromyalgia patients performed 3 min bilateral shoulder elevations with different loads (0-4 kg) with a high-density surface electromyographical (EMG) grid placed on the upper trapezius. Differential activation was quantified by the power spectral median frequency of the difference in EMG amplitude between the cranial and caudal parts of the upper trapezius. The average duration of the differential activation was described by the inverse of the median frequency of the differential activations. The relation between frequency and duration of differential activations as an average of the 4 loads and pain intensity the same day prior to the experiment was explored by Pearsons correlation coefficients. A strong negative relation between frequency of differential activations and pain intensity (R=-0.67, p<0.001) and a strong positive association between duration of differential activations and pain intensity (R=0.66, p<0.001) were found. The significant association between frequency and duration of differential activations and pain intensity among the fibromyalgia patients indicates a relation between this neuromuscular control pattern and pain intensity. This finding support initiation of clinical trials for investigating effects on pain intensity of modifying differential activations among fibromyalgia patients.

Collaboration


Dive into the Christer Grönlund's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Holtermann

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Roeleveld

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge