Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christer R. Wiik-Nielsen is active.

Publication


Featured researches published by Christer R. Wiik-Nielsen.


Virology Journal | 2010

A novel totivirus and piscine reovirus (PRV) in Atlantic salmon (Salmo salar) with cardiomyopathy syndrome (CMS).

Marie Løvoll; Jannicke Wiik-Nielsen; Søren Grove; Christer R. Wiik-Nielsen; Anja B. Kristoffersen; Randi Faller; Trygve T. Poppe; Joonil Jung; Chandra Sekhar Pedamallu; Matthew Meyerson; Espen Rimstad; Torstein Tengs

BackgroundCardiomyopathy syndrome (CMS) is a severe disease affecting large farmed Atlantic salmon. Mortality often appears without prior clinical signs, typically shortly prior to slaughter. We recently reported the finding and the complete genomic sequence of a novel piscine reovirus (PRV), which is associated with another cardiac disease in Atlantic salmon; heart and skeletal muscle inflammation (HSMI). In the present work we have studied whether PRV or other infectious agents may be involved in the etiology of CMS.ResultsUsing high throughput sequencing on heart samples from natural outbreaks of CMS and from fish experimentally challenged with material from fish diagnosed with CMS a high number of sequence reads identical to the PRV genome were identified. In addition, a sequence contig from a novel totivirus could also be constructed. Using RT-qPCR, levels of PRV in tissue samples were quantified and the totivirus was detected in all samples tested from CMS fish but not in controls. In situ hybridization supported this pattern indicating a possible association between CMS and the novel piscine totivirus.ConclusionsAlthough causality for CMS in Atlantic salmon could not be proven for either of the two viruses, our results are compatible with a hypothesis where, in the experimental challenge studied, PRV behaves as an opportunist whereas the totivirus might be more directly linked with the development of CMS.


Fish & Shellfish Immunology | 2009

Atlantic salmon bath challenged with Moritella viscosa - Pathogen invasion and host response

Marie Løvoll; Christer R. Wiik-Nielsen; Hege Smith Tunsjø; Duncan J. Colquhoun; T. Lunder; Henning Sørum; Søren Grove

The Gram-negative bacterium Moritella viscosa is considered to be the main causative agent of winter ulcer, a disease that primarily affects salmonid fish in sea water during cold periods. The disease is initially characterised by localised swelling of the skin followed by development of lesions. To gain more knowledge of the role of M. viscosa in the pathogenesis of winter ulcer, 159 Atlantic salmon (80-110 g) were exposed to a bath challenge dose of 7 x 10(5) cfu ml(-1) for 1 h at 8.9 degrees C. The first mortalities were registered two days post-challenge and the mortality rate increased rapidly. Multi-organ samples were taken throughout the challenge for culture, immunohistochemistry and PCR analysis. Using real-time PCR, M. viscosa DNA was first detected in the gills of all fish examined 2, 6 and 12 h after challenge. From day 2, the bacterium was detected in the muscle/skin, head kidney, spleen and liver. This was in correlation with positive cultured samples and confirmed systemic infection. The early and consistent detection of M. viscosa DNA in gill samples, and less or not in muscle/skin or intestine, could suggest gills as a port of entry for the bacterium. Immunohistochemical analysis using a polyclonal antiserum against M. viscosa demonstrated generalised staining in the lumen of blood vessels and some positive mononuclear cells. The antigens recognised by the antiserum may have originated from extracellular bacterial products and be part of a bacterial invasion strategy. To better understand the immune response in salmon to M. viscosa infection, the expression profiles of the immune genes IL1 beta, C3, ISG15 and CD83 were studied. Increased expression of IL1 beta and C3 was not induced until day 7, which may suggest that M. viscosa might utilize escape mechanisms to evade the hosts immune system by suppressing relevant immune responses.


PLOS ONE | 2013

Sequence Analysis of the Genome of Piscine Orthoreovirus (PRV) Associated with Heart and Skeletal Muscle Inflammation (HSMI) in Atlantic Salmon (Salmo salar)

Turhan Markussen; Maria Krudtaa Dahle; Torstein Tengs; Marie Løvoll; Øystein W. Finstad; Christer R. Wiik-Nielsen; Søren Grove; Silje Lauksund; Børre Robertsen; Espen Rimstad

Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation (HSMI) of farmed Atlantic salmon (Salmo salar). We have performed detailed sequence analysis of the PRV genome with focus on putative encoded proteins, compared with prototype strains from mammalian (MRV T3D)- and avian orthoreoviruses (ARV-138), and aquareovirus (GCRV-873). Amino acid identities were low for most gene segments but detailed sequence analysis showed that many protein motifs or key amino acid residues known to be central to protein function are conserved for most PRV proteins. For M-class proteins this included a proline residue in μ2 which, for MRV, has been shown to play a key role in both the formation and structural organization of virus inclusion bodies, and affect interferon-β signaling and induction of myocarditis. Predicted structural similarities in the inner core-forming proteins λ1 and σ2 suggest a conserved core structure. In contrast, low amino acid identities in the predicted PRV surface proteins μ1, σ1 and σ3 suggested differences regarding cellular interactions between the reovirus genera. However, for σ1, amino acid residues central for MRV binding to sialic acids, and cleavage- and myristoylation sites in μ1 required for endosomal membrane penetration during infection are partially or wholly conserved in the homologous PRV proteins. In PRV σ3 the only conserved element found was a zinc finger motif. We provide evidence that the S1 segment encoding σ3 also encodes a 124 aa (p13) protein, which appears to be localized to intracellular Golgi-like structures. The S2 and L2 gene segments are also potentially polycistronic, predicted to encode a 71 aa- (p8) and a 98 aa (p11) protein, respectively. It is concluded that PRV has more properties in common with orthoreoviruses than with aquareoviruses.


British Journal of Nutrition | 2010

Zebrafish ( Danio rerio) as a model for investigating the safety of GM feed ingredients (soya and maize); performance, stress response and uptake of dietary DNA sequences.

Nini H. Sissener; Lene E. Johannessen; Ernst M. Hevrøy; Christer R. Wiik-Nielsen; Knut G Berdal; Andreas Nordgreen; Gro-Ingunn Hemre

A 20-d zebrafish (Danio rerio) feeding trial, in which a near doubling of fish weight was achieved, was conducted with GM feed ingredients to evaluate feed intake, growth, stress response and uptake of dietary DNA. A partial aim of the study was to assess zebrafish as a model organism in GM safety assessments. Roundup Ready soya (RRS), YieldGard Bt maize (MON810) and their non-modified, maternal, near-isogenic lines were used in a 2 x 2 factorial design. Soya variety and maize variety were the main factors, both with two levels; non-GM and GM. Compared with fish fed non-GM maize, those fed GM maize exhibited significantly better growth, had lower mRNA transcription levels of superoxide dismutase (SOD)-1 and a tendency (non-significant) towards lower transcription of heat shock protein 70 in liver. Sex of the fish and soya variety had significant interaction effects on total RNA yield from the whole liver and transcription of SOD-1, suggesting that some diet component affecting males and females differently was present in different levels in the GM and the non-GM soya used in the present study. Dietary DNA sequences were detected in all of the organs analysed, but not all of the samples. Soya and maize rubisco (non-transgenic, multicopy genes) were most frequently detected, while MON810 transgenic DNA fragments were detected in some samples and RRS fragments were not detected. In conclusion, zebrafish shows promise as a model for this application.


Diseases of Aquatic Organisms | 2012

First detection of piscine reovirus (PRV) in marine fish species

Christer R. Wiik-Nielsen; Marie Løvoll; Nina Sandlund; Randi Faller; Jannicke Wiik-Nielsen; Britt Bang Jensen

Heart and skeletal muscle inflammation (HSMI) is a disease that affects farmed Atlantic salmon Salmo salar L. several months after the fish have been transferred to seawater. Recently, a new virus called piscine reovirus (PRV) was identified in Atlantic salmon from an outbreak of HSMI and in experimentally challenged fish. PRV is associated with the development of HSMI, and has until now only been detected in Atlantic salmon. This study investigates whether the virus is also present in wild fish populations that may serve as vectors for the virus. The virus was found in few of the analyzed samples so there is probably a more complex relationship that involves several carriers and virus -reservoirs.


Microbial Pathogenesis | 2011

Putative virulence genes in Moritella viscosa: activity during in vitro inoculation and in vivo infection.

Hege Smith Tunsjø; Christer R. Wiik-Nielsen; Søren Grove; Eystein Skjerve; Henning Sørum; Trine M. L’Abée-Lund

Moritella viscosa is considered to be the main aetiological agent of winter ulcer disease, primarily affecting farmed salmonid fish in cold marine waters. Transcription profiles of twelve M. viscosa genes, potentially involved in the pathogenesis, were studied during the course of an in vitro cell culture infection assay. Transcription of the same genes was compared in vivo, in head kidney and ulcer tissues of Atlantic salmon challenged with M. viscosa. During the in vitro infection, three putative toxins: a putative repeats in toxin gene (rtxA), a putative cytotoxic necrotizing factor (cnf) and a putative hemolysin increased their transcription significantly with time and coincident with cell rounding. Furthermore, the majority of the genes were stimulated by presence of fish cells and showed higher activity when adhered to fish cells compared to their planktonic counterpart. In vivo gene transcription studies revealed an up-regulation of a putative lateral flagellin in ulcer compared to head kidney tissues in the same individual. A similar trend was seen for cnf and a gene encoding a putative protease, indicating a role for these factors in colonization and tissue damage.


PLOS ONE | 2013

DNA-Fragments Are Transcytosed across CaCo-2 Cells by Adsorptive Endocytosis and Vesicular Mediated Transport

Lene E. Johannessen; Bjørn Spilsberg; Christer R. Wiik-Nielsen; Anja B. Kristoffersen; Arne Holst-Jensen; Knut G Berdal

Dietary DNA is degraded into shorter DNA-fragments and single nucleosides in the gastrointestinal tract. Dietary DNA is mainly taken up as single nucleosides and bases, but even dietary DNA-fragments of up to a few hundred bp are able to cross the intestinal barrier and enter the blood stream. The molecular mechanisms behind transport of DNA-fragments across the intestine and the effects of this transport on the organism are currently unknown. Here we investigate the transport of DNA-fragments across the intestinal barrier, focusing on transport mechanisms and rates. The human intestinal epithelial cell line CaCo-2 was used as a model. As DNA material a PCR-fragment of 633 bp was used and quantitative real time PCR was used as detection method. DNA-fragments were found to be transported across polarized CaCo-2 cells in the apical to basolateral direction (AB). After 90 min the difference in directionality AB vs. BA was >103 fold. Even undegraded DNA-fragments of 633 bp could be detected in the basolateral receiver compartment at this time point. Transport of DNA-fragments was sensitive to low temperature and inhibition of endosomal acidification. DNA-transport across CaCo-2 cells was not competed out with oligodeoxynucleotides, fucoidan, heparin, heparan sulphate and dextrane sulphate, while linearized plasmid DNA, on the other hand, reduced transcytosis of DNA-fragments by a factor of approximately 2. Our findings therefore suggest that vesicular transport is mediating transcytosis of dietary DNA-fragments across intestinal cells and that DNA binding proteins are involved in this process. If we extrapolate our findings to in vivo conditions it could be hypothesized that this transport mechanism has a function in the immune system.


Diseases of Aquatic Organisms | 2010

Previously unrecognised division within Moritella viscosa isolated from fish farmed in the North Atlantic.

Søren Grove; Christer R. Wiik-Nielsen; T. Lunder; Hege Smith Tunsjø; Nora Martinussen Tandstad; L. J. Reitan; A. Marthinussen; M. Sørgaard; A B Olsen; Duncan J. Colquhoun


Microbial Pathogenesis | 2014

Host specificity and clade dependent distribution of putative virulence genes in Moritella viscosa

Christian Karlsen; Anette Bauer Ellingsen; Christer R. Wiik-Nielsen; Hanne C. Winther-Larsen; Duncan J. Colquhoun; Henning Sørum


Aquaculture Nutrition | 2011

Quantification of dietary DNA in tissues of Atlantic salmon (Salmo salar L.) fed genetically modified feed ingredients

Christer R. Wiik-Nielsen; A. Holst-Jensen; C. Bøydler; Knut G Berdal

Collaboration


Dive into the Christer R. Wiik-Nielsen's collaboration.

Top Co-Authors

Avatar

Søren Grove

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Marie Løvoll

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Duncan J. Colquhoun

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Jannicke Wiik-Nielsen

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Knut G Berdal

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Randi Faller

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Torstein Tengs

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Espen Rimstad

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Hege Smith Tunsjø

Akershus University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge