Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christiaan Klijn is active.

Publication


Featured researches published by Christiaan Klijn.


Nature Biotechnology | 2015

A comprehensive transcriptional portrait of human cancer cell lines

Christiaan Klijn; Steffen Durinck; Eric Stawiski; Peter M. Haverty; Zhaoshi Jiang; Hanbin Liu; Jeremiah D. Degenhardt; Oleg Mayba; Florian Gnad; Jinfeng Liu; Gregoire Pau; Jens Reeder; Yi Cao; Kiran Mukhyala; Suresh Selvaraj; Mamie Yu; Gregory J Zynda; Matthew J. Brauer; Thomas D. Wu; Robert Gentleman; Gerard Manning; Robert L. Yauch; Richard Bourgon; David Stokoe; Zora Modrusan; Richard M. Neve; Frederic J. de Sauvage; Jeffrey Settleman; Somasekar Seshagiri; Zemin Zhang

Tumor-derived cell lines have served as vital models to advance our understanding of oncogene function and therapeutic responses. Although substantial effort has been made to define the genomic constitution of cancer cell line panels, the transcriptome remains understudied. Here we describe RNA sequencing and single-nucleotide polymorphism (SNP) array analysis of 675 human cancer cell lines. We report comprehensive analyses of transcriptome features including gene expression, mutations, gene fusions and expression of non-human sequences. Of the 2,200 gene fusions catalogued, 1,435 consist of genes not previously found in fusions, providing many leads for further investigation. We combine multiple genome and transcriptome features in a pathway-based approach to enhance prediction of response to targeted therapeutics. Our results provide a valuable resource for studies that use cancer cell lines.


Cancer Cell | 2011

BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance.

Rinske Drost; Peter Bouwman; Sven Rottenberg; Ute Boon; Eva Schut; Sjoerd Klarenbeek; Christiaan Klijn; Ingrid van der Heijden; Hanneke van der Gulden; Ellen Wientjens; Mark Pieterse; Aurélie Catteau; Peter M. Green; Ellen Solomon; Joanna R. Morris; Jos Jonkers

Hereditary breast cancers are frequently caused by germline BRCA1 mutations. The BRCA1(C61G) mutation in the BRCA1 RING domain is a common pathogenic missense variant, which reduces BRCA1/BARD1 heterodimerization and abrogates its ubiquitin ligase activity. To investigate the role of BRCA1 RING function in tumor suppression and therapy response, we introduced the Brca1(C61G) mutation in a conditional mouse model for BRCA1-associated breast cancer. In contrast to BRCA1-deficient mammary carcinomas, tumors carrying the Brca1(C61G) mutation responded poorly to platinum drugs and PARP inhibition and rapidly developed resistance while retaining the Brca1(C61G) mutation. These findings point to hypomorphic activity of the BRCA1-C61G protein that, although unable to prevent tumor development, affects response to therapy.


Genome Research | 2012

Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events

Jinfeng Liu; William Lee; Zhaoshi Jiang; Zhongqiang Chen; Suchit Jhunjhunwala; Peter M. Haverty; Florian Gnad; Yinghui Guan; Houston Gilbert; Jeremy Stinson; Christiaan Klijn; Joseph Guillory; Deepali Bhatt; Steffan Vartanian; Kimberly Walter; Jocelyn Chan; Thomas Holcomb; Peter Dijkgraaf; Stephanie Johnson; Julie Koeman; John D. Minna; Adi F. Gazdar; Howard M. Stern; Klaus P. Hoeflich; Thomas D. Wu; Jeffrey Settleman; Frederic J. de Sauvage; Robert Gentleman; Richard M. Neve; David Stokoe

Lung cancer is a highly heterogeneous disease in terms of both underlying genetic lesions and response to therapeutic treatments. We performed deep whole-genome sequencing and transcriptome sequencing on 19 lung cancer cell lines and three lung tumor/normal pairs. Overall, our data show that cell line models exhibit similar mutation spectra to human tumor samples. Smoker and never-smoker cancer samples exhibit distinguishable patterns of mutations. A number of epigenetic regulators, including KDM6A, ASH1L, SMARCA4, and ATAD2, are frequently altered by mutations or copy number changes. A systematic survey of splice-site mutations identified 106 splice site mutations associated with cancer specific aberrant splicing, including mutations in several known cancer-related genes. RAC1b, an isoform of the RAC1 GTPase that includes one additional exon, was found to be preferentially up-regulated in lung cancer. We further show that its expression is significantly associated with sensitivity to a MAP2K (MEK) inhibitor PD-0325901. Taken together, these data present a comprehensive genomic landscape of a large number of lung cancer samples and further demonstrate that cancer-specific alternative splicing is a widespread phenomenon that has potential utility as therapeutic biomarkers. The detailed characterizations of the lung cancer cell lines also provide genomic context to the vast amount of experimental data gathered for these lines over the decades, and represent highly valuable resources for cancer biology.


Nature | 2015

A resource for cell line authentication, annotation and quality control

Mamie Yu; Suresh Selvaraj; May M. Y. Liang-Chu; Sahar Aghajani; Matthew Busse; Jean Yuan; Genee Lee; Franklin Peale; Christiaan Klijn; Richard Bourgon; Joshua S. Kaminker; Richard M. Neve

Cell line misidentification, contamination and poor annotation affect scientific reproducibility. Here we outline simple measures to detect or avoid cross-contamination, present a framework for cell line annotation linked to short tandem repeat and single nucleotide polymorphism profiles, and provide a catalogue of synonymous cell lines. This resource will enable our community to eradicate the use of misidentified lines and generate credible cell-based data.


Cancer Discovery | 2013

A High-Throughput Functional Complementation Assay for Classification of BRCA1 Missense Variants

Peter Bouwman; Hanneke van der Gulden; Ingrid van der Heijden; Rinske Drost; Christiaan Klijn; Pramudita Prasetyanti; Mark Pieterse; Ellen Wientjens; Jost Seibler; Frans B. L. Hogervorst; Jos Jonkers

UNLABELLED Mutations in BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancers, and therefore sequence analysis of both genes is routinely conducted in patients with early-onset breast cancer. Besides mutations that clearly abolish protein function or are known to increase cancer risk, a large number of sequence variants of uncertain significance (VUS) have been identified. Although several functional assays for BRCA1 VUSs have been described, thus far it has not been possible to conduct a high-throughput analysis in the context of the full-length protein. We have developed a relatively fast and easy cDNA-based functional assay to classify BRCA1 VUSs based on their ability to functionally complement BRCA1-deficient mouse embryonic stem cells. Using this assay, we have analyzed 74 unclassified BRCA1 missense mutants for which all predicted pathogenic variants are confined to the BRCA1 RING and BRCT domains. SIGNIFICANCE BRCA1 VUSs are frequently found in patients with hereditary breast or ovarian cancer and present a serious problem for clinical geneticists. This article describes the generation, validation, and application of a reliable high-throughput assay for the functional classification of BRCA1 sequence variants of uncertain significance.


Clinical Cancer Research | 2010

Integration of DNA Copy Number Alterations and Prognostic Gene Expression Signatures in Breast Cancer Patients

Hugo M. Horlings; Carmen Lai; Dimitry S.A. Nuyten; Hans Halfwerk; Petra Kristel; Erik H. van Beers; Simon A. Joosse; Christiaan Klijn; Petra M. Nederlof; Marcel J. T. Reinders; Lodewyk F. A. Wessels; Marc J. van de Vijver

Purpose: Several prognostic gene expression profiles have been identified in breast cancer. In spite of this progress in prognostic classification, the underlying mechanisms that drive these gene expression patterns remain unknown. Specific genomic alterations, such as copy number alterations, are an important factor in tumor development and progression and are also associated with changes in gene expression. Experimental Design: We carried out array comparative genomic hybridization in 68 human breast carcinomas for which gene expression and clinical data were available. We used a two-class supervised algorithm, Supervised Identification of Regions of Aberration in aCGH data sets, for the identification of regions of chromosomal alterations that are associated with specific sample labeling. Using gene expression data from the same tumors, we identified genes in the altered regions for which the expression level is significantly correlated with the copy number and validated our results in public available data sets. Results: Specific chromosomal aberrations are related to clinicopathologic characteristics and prognostic gene expression signatures. The previously identified poor prognosis, 70-gene expression signature is associated with the gain of 3q26.33-27.1, 8q22.1-24.21, and 17q24.3-25.1; the 70-gene good prognosis profile is associated with the loss at 16q12.1-13 and 16q22.1-24.1; basal-like tumors are associated with the gain of 6p12.3-23, 8q24.21-22, and 10p12.33-14 and losses at 4p15.31, 5q12.3-13.1, 5q33.1, 10q23.33, 12q13.13-3, 15q15.1, and 15q21.1; HER2+ breast show amplification at 17q11.1-12 and 17q21.31-23.2 (including HER2 gene). Conclusions: There is a strong correlation between the different gene expression signatures and underlying genomic changes. These findings help to establish a link between genomic changes and gene expression signatures, enabling a better understanding of the tumor biology that causes poor prognosis. Clin Cancer Res; 16(2); 651–63


Nature Communications | 2014

Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer

Jinfeng Liu; Mark L. McCleland; Eric Stawiski; Florian Gnad; Oleg Mayba; Peter M. Haverty; Steffen Durinck; Ying-Jiun Chen; Christiaan Klijn; Suchit Jhunjhunwala; Michael S. Lawrence; Hanbin Liu; Yinan Wan; Vivek S. Chopra; Murat Yaylaoglu; Wenlin Yuan; Connie Ha; Houston Gilbert; Jens Reeder; Gregoire Pau; Jeremy Stinson; Howard M. Stern; Gerard Manning; Thomas D. Wu; Richard M. Neve; Frederic J. de Sauvage; Zora Modrusan; Somasekar Seshagiri; Ron Firestein; Zemin Zhang

Gastric cancer is the second leading cause of worldwide cancer mortality, yet the underlying genomic alterations remain poorly understood. Here we perform exome and transcriptome sequencing and SNP array assays to characterize 51 primary gastric tumours and 32 cell lines. Meta-analysis of exome data and previously published data sets reveals 24 significantly mutated genes in microsatellite stable (MSS) tumours and 16 in microsatellite instable (MSI) tumours. Over half the patients in our collection could potentially benefit from targeted therapies. We identify 55 splice site mutations accompanied by aberrant splicing products, in addition to mutation-independent differential isoform usage in tumours. ZAK kinase isoform TV1 is preferentially upregulated in gastric tumours and cell lines relative to normal samples. This pattern is also observed in colorectal, bladder and breast cancers. Overexpression of this particular isoform activates multiple cancer-related transcription factor reporters, while depletion of ZAK in gastric cell lines inhibits proliferation. These results reveal the spectrum of genomic and transcriptomic alterations in gastric cancer, and identify isoform-specific oncogenic properties of ZAK.


Genome Research | 2011

High-throughput semiquantitative analysis of insertional mutations in heterogeneous tumors

Marco J. Koudijs; Christiaan Klijn; Louise van der Weyden; Jaap Kool; Jelle ten Hoeve; Daoud Sie; Pramudita Prasetyanti; Eva Schut; Sjors M. Kas; Theodore Whipp; Edwin Cuppen; Lodewyk F. A. Wessels; David J. Adams; Jos Jonkers

Retroviral and transposon-based insertional mutagenesis (IM) screens are widely used for cancer gene discovery in mice. Exploiting the full potential of IM screens requires methods for high-throughput sequencing and mapping of transposon and retroviral insertion sites. Current protocols are based on ligation-mediated PCR amplification of junction fragments from restriction endonuclease-digested genomic DNA, resulting in amplification biases due to uneven genomic distribution of restriction enzyme recognition sites. Consequently, sequence coverage cannot be used to assess the clonality of individual insertions. We have developed a novel method, called shear-splink, for the semiquantitative high-throughput analysis of insertional mutations. Shear-splink employs random fragmentation of genomic DNA, which reduces unwanted amplification biases. Additionally, shear-splink enables us to assess clonality of individual insertions by determining the number of unique ligation points (LPs) between the adapter and genomic DNA. This parameter serves as a semiquantitative measure of the relative clonality of individual insertions within heterogeneous tumors. Mixing experiments with clonal cell lines derived from mouse mammary tumor virus (MMTV)-induced tumors showed that shear-splink enables the semiquantitative assessment of the clonality of MMTV insertions. Further, shear-splink analysis of 16 MMTV- and 127 Sleeping Beauty (SB)-induced tumors showed enrichment for cancer-relevant insertions by exclusion of irrelevant background insertions marked by single LPs, thereby facilitating the discovery of candidate cancer genes. To fully exploit the use of the shear-splink method, we set up the Insertional Mutagenesis Database (iMDB), offering a publicly available web-based application to analyze both retroviral- and transposon-based insertional mutagenesis data.


BMC Cancer | 2010

Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers

Henne Holstege; Erik H. van Beers; Arno Velds; Xiaoling Liu; Simon A. Joosse; Sjoerd Klarenbeek; Eva Schut; Ron M. Kerkhoven; Christiaan Klijn; Lodewyk F. A. Wessels; Petra M. Nederlof; Jos Jonkers

BackgroundGenomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development.MethodsTo identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1Δ/Δ;p53Δ/Δ, Brca2Δ/Δ;p53Δ/Δand p53Δ/Δmammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers.ResultsOur genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2Δ/Δ;p53Δ/Δtumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species.ConclusionsThe selection of the oncogenome during mouse and human breast tumor development is markedly different, apart from the MYC gain and RB1-associated loss. These differences should be kept in mind when using mouse models for preclinical studies.


Journal of Clinical Investigation | 2016

BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1

Rinske Drost; Kiranjit K. Dhillon; Hanneke van der Gulden; Ingrid van der Heijden; Inger Brandsma; Cristina Cruz; Dafni Chondronasiou; Marta Castroviejo-Bermejo; Ute Boon; Eva Schut; Eline van der Burg; Ellen Wientjens; Mark Pieterse; Christiaan Klijn; Sjoerd Klarenbeek; Fabricio Loayza-Puch; Ran Elkon; Liesbeth van Deemter; Sven Rottenberg; Marieke van de Ven; Dick H. W. Dekkers; Jeroen Demmers; Dik C. van Gent; Reuven Agami; Judith Balmaña; Violeta Serra; Toshiyasu Taniguchi; Peter Bouwman; Jos Jonkers

Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain-less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients.

Collaboration


Dive into the Christiaan Klijn's collaboration.

Top Co-Authors

Avatar

Jos Jonkers

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sjoerd Klarenbeek

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Schut

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge