Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian A. Reynolds is active.

Publication


Featured researches published by Christian A. Reynolds.


Molecular Neurobiology | 2013

Molecular Mechanisms of Ischemia–Reperfusion Injury in Brain: Pivotal Role of the Mitochondrial Membrane Potential in Reactive Oxygen Species Generation

Thomas H. Sanderson; Christian A. Reynolds; Rita Kumar; Karin Przyklenk; Maik Hüttemann

Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a “burst” of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.


Neurological Research | 2011

Pericyte-mediated vasoconstriction underlies TBI-induced hypoperfusion

Paula Dore-Duffy; Sherry Wang; Afroza Mehedi; Vladamir Katyshev; Kristen Cleary; Alexander Tapper; Christian A. Reynolds; Yuchuan Ding; Pang Zhan; José A. Rafols; Christian W. Kreipke

OBJECTIVES Endothelin-1 is a 21-amino acid peptide that together with specific receptors, A (ETrA) and B (ETrB) is induced following traumatic brain injury (TBI) and has been closely linked to regulation of cerebral vasospasm, oxidative stress, and hypoperfusion. Specific endothelin receptor antagonists have been shown to ameliorate early evidence of neuronal cell injury, activation of microglial cells, and hypoperfusion following TBI. The exact mechanism involved in TBI-induced hypoperfusion is still unclear; however, it is thought that endothelin-1 engagement of ETrA is primarily responsible for changes in blood flow. In this study we question the role of the microvascular pericyte in endothelin-1-mediated pathophysiology in TBI. METHODS Pericyte expression of endothelin-1, ETrA, and ETrB was examined in primary culture and in sham and impacted rat brain. Adult male rats were also given intracerebroventricular injections of ETrA (BQ-123) before being subjected to TBI using a closed head acceleration impact model. RESULTS Primary pericytes express both endothelin-1 and its receptors ETrA and ETrB. Following TBI, the number of alpha-smooth muscle actin (SMA) positive pericytes located in microvessels is significantly increased by 4 hours post-traumatic impact. Increases in pericyte expression of alpha-SMA correlated with evidence of a reduction in both arteriolar and capillary diameter. Capillary endothelin-1, ETrA, and ETrB transcript and protein was also increased. Increased endothelin-1 expression was seen by 2-4 hours post-impact. Upregulation of receptors was observed by 4-8 hours and maximum by 24 hours. ETrA antagonists decreased the number of alpha-SMA(+) pericytes as well as changes in microvascular diameter. CONCLUSION These results suggest that decreased vasoconstriction following TBI may be due to an endothelin-1-induced pericyte-mediated regulation of microvessel blood flow following TBI. Furthermore, results suggest that ETrA antagonists ameliorate trauma induced hypoperfusion, in part, by inhibiting endothelin-1-mediated upregulation of alpha-SMA in pericytes.


Molecular and Cellular Neuroscience | 2016

Mitochondrial dynamics following global cerebral ischemia

Rita Kumar; Melissa J. Bukowski; Joseph Wider; Christian A. Reynolds; Lesley Calo; Bradley Lepore; Reneé Tousignant; Michelle Jones; Karin Przyklenk; Thomas H. Sanderson

Global brain ischemia/reperfusion induces neuronal damage in vulnerable brain regions, leading to mitochondrial dysfunction and subsequent neuronal death. Induction of neuronal death is mediated by release of cytochrome c (cyt c) from the mitochondria though a well-characterized increase in outer mitochondrial membrane permeability. However, for cyt c to be released it is first necessary for cyt c to be liberated from the cristae junctions which are gated by Opa1 oligomers. Opa1 has two known functions: maintenance of the cristae junction and mitochondrial fusion. These roles suggest that Opa1 could play a central role in both controlling cyt c release and mitochondrial fusion/fission processes during ischemia/reperfusion. To investigate this concept, we first utilized in vitro real-time imaging to visualize dynamic changes in mitochondria. Oxygen-glucose deprivation (OGD) of neurons grown in culture induced a dual-phase mitochondrial fragmentation profile: (i) fragmentation during OGD with no apoptosis activation, followed by fusion of mitochondrial networks after reoxygenation and a (ii) subsequent extensive fragmentation and apoptosis activation that preceded cell death. We next evaluated changes in mitochondrial dynamic state during reperfusion in a rat model of global brain ischemia. Evaluation of mitochondrial morphology with confocal and electron microscopy revealed a similar induction of fragmentation following global brain ischemia. Mitochondrial fragmentation aligned temporally with specific apoptotic events, including cyt c release, caspase 3/7 activation, and interestingly, release of the fusion protein Opa1. Moreover, we uncovered evidence of loss of Opa1 complexes during the progression of reperfusion, and electron microscopy micrographs revealed a loss of cristae architecture following global brain ischemia. These data provide novel evidence implicating a temporal connection between Opa1 alterations and dysfunctional mitochondrial dynamics following global brain ischemia.


Neurological Research | 2011

Clazosentan, a novel endothelin A antagonist, improves cerebral blood flow and behavior after traumatic brain injury

Christian W. Kreipke; José A. Rafols; Christian A. Reynolds; Steven Schafer; Alex Marinica; Christopher Bedford; Michael Fronczak; Donald M. Kuhn; William M. Armstead

OBJECTIVES The purpose of this study was to test the efficacy of a novel endothelin receptor A antagonist on blood flow and behavioral outcome given 30 minutes following traumatic brain injury. METHODS Male Sprague-Dawley rats (400-450 g) were used in this study. All animals were scanned for initial blood flow using arterial spin labeling magnetic resonance imaging (n = 72 total). Half were subjected to traumatic brain injury using a weight acceleration impact device (n = 36 total). Sham operated animals were used as control (n = 36 total). Thirty minutes following traumatic brain injury, animals were given one intravenous injection of vehicle (0·9% saline) or 1·0 mg/kg clazosentan, a novel endothelin receptor A antagonist, for a total of four groups. At 4, 24, and 48 hours post-traumatic brain injury, blood flow determination continued. On the second day post-traumatic brain injury/sham operation, behavioral testing commenced using a radial arm maze to assess cognitive function. RESULTS Our results indicate that 1·0 mg/kg clazosentan was effective in ameliorating hypoperfusion seen after traumatic brain injury. Saline had no effect. Furthermore, clazosentan treatment was effective in significantly improving behavioral outcome following traumatic brain injury. CONCLUSION Collectively, these results indicate that clazosentan, given at 30 minutes post-traumatic brain injury, is effective in improving outcome following injury.


Neurological Research | 2011

Differential effects of endothelin receptor A and B antagonism on behavioral outcome following traumatic brain injury.

Christian A. Reynolds; Steven Schafer; Ryan Pirooz; Alex Marinica; Ali Chbib; Christopher Bedford; Michael Fronczak; José A. Rafols; Donald M. Kuhn; Christian W. Kreipke

Abstract Objectives: Previously we have reported that endothelin receptor A and B antagonists elicit differential effects on cerebral blood flow and cellular damage. In summary, endothelin receptor A antagonists restore microcirculation and diminish cellular damage after injury, while endothelin receptor B antagonists had no effect on either parameter. However, what is not known is the effect of either antagonist on behavioral outcome. Therefore, this work was designed to test the effects of endothelin receptor A and B antagonism on behavioral outcome following traumatic brain injury (TBI). Methods: A total of 48 male Sprague-Dawley rats (400-450 g) were used in this study. Four groups (n = 12 per group) were generated as follows: sham operation, trauma+vehicle (0·9% saline), trauma+40 nmol BQ-123 (a selective endothelin receptor A antagonist) and trauma +20 nmol BQ-788 (a selective endothelin receptor B antagonist). All treatments were delivered via intracerebroventricular injection. Trauma was induced using a weight acceleration impact device. Twenty-four hours post-injection animals were tested for 21 days on a radial arm maze task to determine cognitive outcome. Results: Our data indicated that endothelin receptor A antagonism significantly reduced the extent of behavioral deficits following TBI while endothelin receptor B and vehicle injection had no effect. Conclusion: The results suggest that endothelin receptor A, but not endothelin receptor B, antagonism improves behavioral outcome following TBI. Furthermore, these data provide a functional correlate to previously published findings in our laboratory showing that endothelin receptor A antagonism improves both blood flow and cellular outcome following TBI. In a broader sense, this work demonstrates that hypoperfusion following TBI likely contributes to poor outcome following head injury.


Neurological Research | 2011

Endothelin receptors A and B are expressed in distinct cellular compartments of rat hippocampus following global ischemia: an immunocytochemical study

Christian W. Kreipke; Christian A. Reynolds; Patrick Schafer; Steven Schafer; Ryan Pirooz; José A. Rafols

Abstract Objectives: The syntheses of endothelin receptors A and B were previously shown to be upregulated in rat dorsal hippocampus after traumatic brain injury. Here we characterize endothelin receptor A and endothelin receptor B cellular distribution in hippocampus after permanent global brain ischemia and their possible association to nerve cell injury. Methods: Twenty-minute global ischemia was induced using the Pulsinelli’s four-vessel occlusion in conjunction with systemic hypovolemia in male rats. Endothelin receptor A and endothelin receptor B immunoreactivities from sham-operated and ischemic rats were assessed qualitatively in dentate gyrus, Cornu Ammonis, and hilus regions of the hippocampus. Quantitative immunoreactivity measurements were also obtained by optical densitometry. Results: In sham-operated control hippocampus, endothelin receptor A immunoreactivity was absent in nerve cell bodies but strongly expressed in the mossy fiber pathway (axons of dentate gyrus granule cells). After ischemia endothelin receptor A immunoreactivity in the same regions was reduced by 40-50% from control. In contrast, endothelin receptor B immunoreactivity in control hippocampus was widely distributed in pyramidal neurons, granule cells and glial cells, this immunoreactivity increasing by approximately 25-30% after ischemia. Discussion: Endothelin receptor A’s marked decrease in mossy fibers after ischemia may contribute to glutamate release from mossy fiber terminals, thus enhancing excitotoxic effects on their Cornu Ammonis synaptic targets. Additionally, endothelin receptor B increased expression in neurons and glia could be related to a more generalized activation of survival mechanisms involving elements of the neurovascular unit.


Neurological Research | 2011

Endothelin receptor A antagonism reduces the extent of diffuse axonal injury in a rodent model of traumatic brain injury

Christian A. Reynolds; Srinivasu Kallakuri; M. Bagchi; Steven Schafer; Christian W. Kreipke; José A. Rafols

Abstract Objectives: While endothelin-1 and its receptors have traditionally been associated with mediating vasoreactivity, we have recently shown that the vast majority of endothelin receptor A expression following traumatic brain injury is localized within the neuron. While it has been suggested that endothelin receptor A plays a role in influencing neuronal integrity, the significance of neuronally expressed endothelin receptor A remains unclear. One report suggests that endothelin-1 signaling mediates diffuse axonal injury. Therefore, this work sought to determine whether treatment with BQ-123, a selective endothelin receptor A antagonist, diminishes the extent of diffuse axonal injury following trauma. Methods: A total of 12 male Sprague-Dawley rats (350-400 g) were used in this study. Two groups (n = 6 per group) were generated as follows: sham operation and traumatic brain injury+1·0 mg/kg BQ-123 delivered intravenously 30 minutes prior to the injury. Trauma was induced using a weight acceleration impact device. Animals were terminated 24 or 48 hours after trauma, and a series of six coronal sections through the entire anterior-posterior extent of the corpus callosum were selected from each brain for quantification of diffuse axonal injury by beta-amyloid precursor protein immunostaining. Results: Our data indicated that animals treated with BQ-123 30 minutes prior to trauma showed a significant reduction in diffuse axonal injury in corpus callosum at both 24 and 48 hours post-injury. Conclusion: The results show that endothelin receptor A antagonism reduced the extent of diffuse axonal injury, demonstrating a potential influence of the endothelin system on the intra-axonal cascade of molecular events underlying diffuse axonal injury.


Scientific Reports | 2018

Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury

Thomas H. Sanderson; Joseph Wider; Icksoo Lee; Christian A. Reynolds; Jenney Liu; Bradley Lepore; Reneé Tousignant; Melissa J. Bukowski; Hollie Johnston; Alemu Fite; Sarita Raghunayakula; John Kamholz; Lawrence I. Grossman; Karin Przyklenk; Maik Hüttemann

The interaction of light with biological tissue has been successfully utilized for multiple therapeutic purposes. Previous studies have suggested that near infrared light (NIR) enhances the activity of mitochondria by increasing cytochrome c oxidase (COX) activity, which we confirmed for 810 nm NIR. In contrast, scanning the NIR spectrum between 700 nm and 1000 nm revealed two NIR wavelengths (750 nm and 950 nm) that reduced the activity of isolated COX. COX-inhibitory wavelengths reduced mitochondrial respiration, reduced the mitochondrial membrane potential (ΔΨm), attenuated mitochondrial superoxide production, and attenuated neuronal death following oxygen glucose deprivation, whereas NIR that activates COX provided no benefit. We evaluated COX-inhibitory NIR as a potential therapy for cerebral reperfusion injury using a rat model of global brain ischemia. Untreated animals demonstrated an 86% loss of neurons in the CA1 hippocampus post-reperfusion whereas inhibitory NIR groups were robustly protected, with neuronal loss ranging from 11% to 35%. Moreover, neurologic function, assessed by radial arm maze performance, was preserved at control levels in rats treated with a combination of both COX-inhibitory NIR wavelengths. Taken together, our data suggest that COX-inhibitory NIR may be a viable non-pharmacologic and noninvasive therapy for the treatment of cerebral reperfusion injury.


Scientific Reports | 2018

Publisher Correction: Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury

Thomas H. Sanderson; Joseph Wider; Icksoo Lee; Christian A. Reynolds; Jenney Liu; Bradley Lepore; Reneé Tousignant; Melissa J. Bukowski; Hollie Johnston; Alemu Fite; Sarita Raghunayakula; John Kamholz; Lawrence I. Grossman; Karin Przyklenk; Maik Hüttemann

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.


Physiological Reports | 2018

Drosophila tafazzin mutants have impaired exercise capacity

Deena Damschroder; Christian A. Reynolds; Robert Wessells

Cardiolipin (CL) is a mitochondrial phospholipid that helps maintain normal structure of the inner mitochondrial membrane and stabilize the protein complexes of the electron transport chain to promote efficient ATP synthesis. Tafazzin, an acyl‐transferase, is required for synthesis of the mature form of CL. Mutations in the tafazzin (TAZ) gene are associated with a human disorder known as Barth syndrome. Symptoms of Barth syndrome often include muscle weakness and exercise intolerance. Previous work demonstrates that Drosophila Taz mutants exhibit motor weakness, as measured by reduced flying and climbing abilities. However, Drosophila TAZ mutants’ baseline endurance or response to endurance exercise training has not been assessed. Here, we find that TAZ mutants have reduced endurance and do not improve following a stereotypical exercise training paradigm, indicating that loss of TAZ function leads to exercise intolerance in Drosophila. Although cardiac phenotypes are observed in human Barth syndrome patients, TAZ mutants had normal resistance to cardiac pacing. In the future, endurance may be a useful screening tool to identify additional genetic modifiers of tafazzin.

Collaboration


Dive into the Christian A. Reynolds's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenney Liu

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge