Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christian A. Tidona is active.

Publication


Featured researches published by Christian A. Tidona.


The Springer Index of Viruses | 2002

The Springer index of viruses

Christian A. Tidona; Gholamreza Darai; Cornelia Buhen-Osmond

Covers all 241 officially recognised virus genera. Each chapter covers virus reserach history, virion morphology, electron microscopic images, genome properties, replication strategy, properties of individual transcripts and proteins, biological properties in vitro and in vivo, and specific information about the individual virus species.


Virus Genes | 1998

Is the major capsid protein of iridoviruses a suitable target for the study of viral evolution

Christian A. Tidona; Paul Schnitzler; Roland Kehm; Gholamreza Darai

Iridoviruses are large cytoplasmic DNA viruses that are specific for different insect or vertebrate hosts. The major structural component of the non-enveloped icosahedral virus particles is the major capsid protein (MCP) which appears to be highly conserved among members of the family Iridoviridae, Phycodnaviridae, and African swine fever virus. The amino acid sequences of the known MCPs were used in comparative analyses to elucidate the phylogenic relationships between different cytoplasmic DNA viruses including three insect iridoviruses (Tipula iridescent virus, Simulium iridescent virus, Chilo iridescent virus), seven vertebrate iridoviruses isolated either from fish (lymphocystis disease virus, rainbow trout virus, European catfish virus, doctor fish virus), amphibians (frog virus 3), or reptiles (turtle virus 3, turtle virus 5), one member of the family Phycodnaviridae (Paramecium bursaria Chlorella virus type 1), and African swine fever virus. These analyses revealed that the amino acid sequence of the MCP is a suitable target for the study of viral evolution since it contains highly conserved domains, but is sufficiently diverse to distinguish closely related iridovirus isolates. Furthermore the results suggest that a substantial revision of the taxonomy of iridoviruses based on molecular phylogeny is required.


Virus Genes | 2000

Iridovirus Homologues of Cellular Genes--Implications for the Molecular Evolution of Large DNA Viruses

Christian A. Tidona; Gholamreza Darai

Iridoviruses belong to the group of large cytoplasmic deoxyriboviruses and infect either insects or vertebrates. In analogy to other large DNA viruses of eucaryotes it was found that iridoviruses encode a number of cellular protein homologues. The majority of these proteins represent orthologues of cellular enzymes involved in transcription, replication, and nucleotide metabolism. Others may have the potential to interfere with cell cycle regulation or immune defence mechanisms of the host. This raises the question about the phylogenetic origin of the corresponding viral genes. During the evolution of large cytoplasmic DNA viruses such as iridoviruses, poxviruses, and African swine fever virus the acquirement of cellular genes appears to be a crucial event. Each member of this group of viruses encodes a DNA polymerase, two subunits of the DNA-dependent RNA polymerase, and two subunits of the ribonucleotide reductase. It is important to note that all of these viral proteins show a high level of multidomain structure conservation as compared to their cellular orthologues. As a consequence the large cytoplasmic DNA viruses have the ability to replicate independently of the cellular nucleus in the cytoplasm of the infected cell. Assuming a common cellular origin of viral DNA polymerase genes the corresponding amino acid sequences were chosen to construct a phylogenetic tree showing the relatedness among large DNA viruses of eucaryotes.


Journal of General Virology | 2002

Comparative analysis of the genome and host range characteristics of two insect iridoviruses: Chilo iridescent virus and a cricket iridovirus isolate.

Nurith J. Jakob; R. G. Kleespies; Christian A. Tidona; K. Müller; Hans R. Gelderblom; Gholamreza Darai

The iridovirus isolate termed cricket iridovirus (CrIV) was isolated in 1996 from Gryllus campestris L. and Acheta domesticus L. (both Orthoptera, Gryllidae). CrIV DNA shows distinct DNA restriction patterns different from those known for Insect iridescent virus type 6 (IIV-6). This observation led to the assumption that CrIV might be a new species within the family Iridoviridae. CrIV can be transmitted perorally to orthopteran species, resulting in specific, fatal diseases. These species include Gryllus bimaculatus L. and the African migratory locust Locusta migratoria migratorioides (Orthoptera, Acrididae). Analysis of genomic and host range properties of this isolate was carried out in comparison to those known for IIV-6. Host range studies of CrIV and IIV-6 revealed no differences in the peroral susceptibility in all insect species and developmental stages tested to date. Different gene loci of the IIV-6 genome were analyzed, including the major capsid protein (274L), thymidylate synthase (225R), an exonuclease (012L), DNA polymerase (037L), ATPase (075L), DNA ligase (205R) and the open reading frame 339L, which is homologous to the immediate-early protein ICP-46 of frog virus 3. The average identity of the selected viral genes and their gene products was found to be 95.98 and 95.18% at the nucleotide and amino acid level, respectively. These data led to the conclusion that CrIV and IIV-6 are not different species within the Iridoviridae family and that CrIV must be considered to be a variant and/or a novel strain of IIV-6.


Virus Genes | 1996

Identification of the Gene Encoding the DNA (Cytosine-5) Methyltransferase of Lymphocystis Disease Virus

Christian A. Tidona; Paul Schnitzler; Roland Kehm; Gholamreza Darai

The gene encoding the DNA (cytosine-5) methyltransferase (m5C-MTase) of lymphocystis disease virus (flounder isolate, LCDV-1) has been identified by polymerase chain reaction (PCR) using oligonucleotide primers synthesized corresponding to different regions of the m5C-MTase gene of frog virus 3 (FV3). A DNA fragment of 487 bp was amplified using oligonucleotide primers L3 and R4 which correspond to the nucleotide positions 87 to 109 and 530 to 550 of the m5C-MTase gene of FV3, respectively. The DNA nucleotide sequence of the PCR product was determined by direct cycle sequencing. The alignment of the deduced amino acid sequence derived from the PCR product and the m5C-MTase protein of FV3 revealed a homology of 55.4% identity and 29.1% similarity. The amino acid sequence which was found to be significantly homologous to the amino acid sequence deduced from the nucleotide sequence of the PCR product was located at the amino acid position 37 to 175 of the m5C-MTase of FV3 indicating the specificity of the amplified PCR product. The DNA nucleotide sequence of the LCDV-1 genome corresponding to the 5′ and 3′ termini of the m5C-MTase gene was determined by primer walking. The locus of the m5C-MTase gene of LCDV-1 was identified within the EcoRI DNA fragment G of LCDV-1 (7.9 kbp; 0.947 to 0.034 map units). The m5C-MTase gene of LCDV-1 comprises 684 nucleotides coding for a putative protein of 228 amino acid residues. A high degree of amino acid sequence homology (53.3% identity and 25.8% similarity) was detected between the m5C-MTases of LCDV-1 and FV3.


Virus Genes | 2001

Large Envelope Glycoprotein and Nucleocapsid Protein of Equine Arteritis Virus (EAV) Induce an Immune Response in Balb/c Mice by DNA Vaccination; Strategy for Developing a DNA-Vaccine Against EAV-Infection

Edda Tobiasch; Roland Kehm; Udo Bahr; Christian A. Tidona; Nurith J. Jakob; Michaela Handermann; Gholamreza Darai; Matthias Giese

Equine arteritis virus (EAV) is a member of the Arteriviridae family, that includes lactate dehydrogenase-elevating virus (LDV), porcine reproductive and respiratory syndrome virus (PRRSV), and simian haemorrhagic fever virus (SHFV). Equine arteritis is a contagious disease of horses and is spread via respiratory or reproductive tract. The objective of the present study is to evaluate the possibility for developing a model system for prevention horses against an EAV infection by DNA vaccination. A cDNA bank from the RNA of EAV was established. This gene library contains the translation unit of the EAV open reading frames (ORF) 1 to 7. The identity of the cDNA was confirmed by nucleotide sequence analysis. Using this defined EAV cDNA gene library the cDNA sequence of the viral ORFs were molecularly cloned into the corresponding sites of well characterized and powerful expression vectors (pCR3.1, pDisplay, and/or pcDNA3.1/HisC).The capability of these recombinant plasmids expressing the gene products of the individual viral ORFs 3 to 5, and 7 in induction of an immune response in mouse system was investigated. The Balb/c mice (ten mice per assay) were inoculated with the DNA of the constructed expression vectors harboring and expressing the EAV cDNA of the viral ORFs. The Balb/c mice were injected with about 100 μg DNA diluted in 100 μl PBS. The DNA was injected subcutaneously and into the tibialis cranialis muscle (Musculus gastrocnemius). The mice were boosted 3 to 5 times with the same quantities of DNA and under the same conditions at about two week intervals. Control mice received the same amount of parental expression vectors via an identical route and frequency.The pre- and post-vaccinated sera of the individual animals were screened by neutralization tests (NT). Neutralizing antibodies against EAV were detected when the animals were inoculated with the DNA of the expression vectors harboring cDNA of the EAV ORFs 5 and 7. Highest NT-titers were observed when the animals were administered with the cDNA of ORF 5 and/or with the cDNA of the neutralization determinants of EAV that is located on the N-terminal ectodomain of the gene product of ORF 5 between the amino acid positions 1–121. These results obtained from these studies justified proofing the capability of the EAV cDNA sequences of the viral genes including ORFs 5 and 7 in the autologous animal system horse.


Journal of Virology | 2005

Envelope Targeting: Hemagglutinin Attachment Specificity Rather than Fusion Protein Cleavage-Activation Restricts Tupaia Paramyxovirus Tropism

Christoph Springfeld; Veronika von Messling; Christian A. Tidona; Gholamreza Darai; Roberto Cattaneo

ABSTRACT To engineer a targeting envelope for gene and oncolytic vector delivery, we characterized and modified the envelope proteins of Tupaia paramyxovirus (TPMV), a relative of the morbilli- and henipaviruses that neither infects humans nor has cross-reactive relatives that infect humans. We completed the TPMV genomic sequence and noted that the predicted fusion (F) protein cleavage-activation site is not preceded by a canonical furin cleavage sequence. Coexpression of the TPMV F and hemagglutinin (H) proteins induced fusion of Tupaia baby fibroblasts but not of human cells, a finding consistent with the restricted TPMV host range. To identify the factors restricting fusion of non-Tupaia cells, we initially analyzed F protein cleavage. Even without an oligo- or monobasic protease cleavage sequence, TPMV F was cleaved in F1 and F2 subunits in human cells. Edman degradation of the F1 subunit yielded the sequence IFWGAIIA, placing the conserved phenylalanine in position 2, a novelty for paramyxoviruses but not the cause of fusion restriction. We then verified whether the lack of a TPMV H receptor limits fusion. Toward this end, we displayed a single-chain antibody (scFv) specific for the designated receptor human carcinoembryonic antigen on the TPMV H ectodomain. The H-scFv hybrid protein coexpressed with TPMV F mediated fusion of cells expressing the designated receptor, proving that the lack of a receptor limits fusion and that TPMV H can be retargeted. Targeting competence and the absence of antibodies in humans define the TPMV envelope as a module to be adapted for ferrying ribonucleocapsids of oncolytic viruses and gene delivery vectors.


Virus Genes | 1999

Identification of a gene cluster within the genome of Chilo iridescent virus encoding enzymes involved in viral DNA replication and processing.

Müller K; Christian A. Tidona; Gholamreza Darai

The nucleotide sequence of the genome of Chilo iridescent virus (CIV) between the genome coordinates 0.974 and 0.101 comprising 27,079 bp was determined. Computer-assisted analysis of the DNA sequence of this particular region of the CIV genome revealed the presence of 42 potential open reading frames (ORFs) with coding capacities for polypeptides ranging from 50 to 1,273 amino acid residues. The analysis of the amino acid sequences deduced from the individual ORFs resulted in the identification of 10 potential viral genes that show significant homology to functionally characterized proteins of other species. A cluster of five viral genes that encode enzymes involved in the viral DNA replication was identified including the DNA topoisomerase II (A039L, 1,132 amino acids (aa)), the DNA polymerase (ORF A031L, 1,273 aa), a helicase (ORF A027L, 530 aa), a nucleoside triphosphatase I (ORF A025L, 1,171 aa), and an exonuclease II (ORF A019L, 624 aa), all ORFs possessing the same genomic orientation. The DNA polymerase of CIV showed the highest homology (24.8% identity) to the DNA polymerase of lymphocystis disease virus lymphocystis disease virus 1 (LCDV-1), a member of the family Iridoviridae, indicating the close relatedness of the two viruses. In addition, four putative gene products were found to be significantly homologous to previously identified hypothetical proteins of CIV.


Virus Genes | 1998

Identification of a Thymidylate Synthase Gene within the Genome of Chilo Iridescent Virus

Kristin Mu¨ller; Christian A. Tidona; Udo Bahr; Gholamreza Darai

The thymidylate synthase (TS, EC 2.1.1.45) is essential for the de novo synthesis of dTMP in pro- and eucaryotic organisms. Consequently it plays a major role in the replication of the DNA genome of a cell or a DNA virus. The gene encoding the TS of Chilo iridescent virus (CIV) was identified by nucleotide sequence analysis of the viral genome and was mapped within the EcoRI CIV DNA fragments G and R. Computer assisted analysis of the DNA nucleotide sequence between the genome coordinates 0.482 and 0.489 revealed an open reading frame (ORF) of 885 nucleotides. This ORF was found to encode a polypeptide of 295 amino acid residues (33.9 kDa) that showed significant homologies to known TS of different species including mammals, plants, fungi, protozoa, bacteria, and DNA viruses. The highest amino acid homologies were found between the CIV-TS and the TS of herpesvirus ateles (54.0%), Saccharomyces cerevisiae (51.8%), herpesvirus saimiri (51.0%), rhesus monkey rhadinovirus (50.7%), mouse (50.5%), rat (50.2%), varicella-zoster virus (50.2%), equine herpesvirus 2 (50.0%), and the human TS (48.4%). The CIV-TS contains six amino acid domains that are highly conserved in the TS of other species. Within these domains the major amino acid residues are present for which a functional role has been reported. The CIV-TS was found to be more closely related to the TS of eucaryotes than to the TS of procaryotes indicating the phylogenetic origin of the CIV-TS gene. The identification of a TS gene in the genome of CIV is the first report of a viral TS that is not encoded by a herpesvirus or a bacteriophage.


Virus Genes | 1997

The DNA Sequence of Chilo Iridescent Virus Between the Genome Coordinates 0.101 and 0.391; Similarities in Coding Strategy Between Insect and Vertebrate Iridoviruses

Udo Bahr; Christian A. Tidona; Gholamreza Darai

Chilo iridescent virus (CIV), the type species of the genus Iridovirus within the family Iridoviridae, is highly pathogenic for larvae of important pest insects. The virions contain a single linear double-stranded DNA molecule (209 kbp) that is circularly permuted and terminally redundant. The nucleotide sequence of the viral genome between the genome coordinates 0.101 and 0.391 (60,170 bp) was determined by automated cycle sequencing. This particular region of the CIV genome contains 112 open reading frames (ORFs) with coding capacities for 50 to 1186 amino acids. The alignment of the deduced amino acid sequences with well-characterized proteins stored in protein databases led to the identification of several genes with significant homologies, such as the largest subunit of the DNA-dependent RNA polymerase, large subunit of the ribonucleoside-diphosphate reductase, endonuclease, protein-tyrosine phosphatase, helicase, global transactivator, two apoptosis inhibitor homologs, antibiotic peptide homolog, and others. The highest homologies were detected between putative viral gene products of CIV and the corresponding viral proteins of lymphocystis disease virus of fish (LCDV), which belongs to the genus Lymphocystivirus within the iridovirus family.

Collaboration


Dive into the Christian A. Tidona's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Udo Bahr

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar

Christoph Springfeld

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Schnitzler

University Hospital Heidelberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge